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PREFACE 

"  The  Theory  of  Differential  Equations,"  said  Sophus  Lie,  "  is  the 
most  important  branch  of  modern  mathematics."  The  subject  may 
be  considered  to  occupy  a  central  position  from  which  different 

lines  of  development  extend  in  many  directions.  If  we  travel  along 

the  purely  analytical  path,  we  are  soon  led  to  discuss  Infinite  Series, 
Existence  Theorems  and  the  Theory  of  Functions.  Another  leads 

us  to  the  Differential  Geometry  of  Curves  and  Surfaces.  Between 
the  two  lies  the  path  first  discovered  by  Lie,  leading  to  continuous 

groups  of  transformation  and  their  geometrical  interpretation. 
Diverging  in  another  direction,  we  are  led  to  the  study  of  mechanical 
and  electrical  vibrations  of  all  kinds  and  the  important  phenomenon 

of  resonance.  Certain  partial  differential  equations  form  the  start- 
ing point  for  the  study  of  the  conduction  of  heat,  the  transmission 

of  electric  waves,  and  many  other  branches  of  physics.  Physical 

Chemistry,  with  its  law  of  mass-action,  is  largely  concerned  with 
certain  differential  equations. 

The  object  of  this  book  is  to  give  an  account  of  the  central 

parts  of  the  subject  in  as  simple  a  form  as  possible,  suitable  for 
those  with  no  previous  knowledge  of  it,  and  yet  at  the  same  time 
to  point  out  the  different  directions  in  which  it  may  be  developed. 

The  greater  part  of  the  text  and  the  examples  in  the  body  of  it 

will  be  found  very  easy.  The  only  previous  knowledge  assumed  is 
that  of  the  elements  of  the  differential  and  integral  calculus  and  a 

little  coordinate  geometry.  The  miscellaneous  examples  at  the  end 
of  the  various  chapters  are  slightly  harder.  They  contain  several 
theorems  of  minor  importance,  with  hints  that  should  be  sufficient 
to  enable  the  student  to  solve  them.  They  also  contain  geometrical 

and  physical  applications,  but  great  care  has  been  taken  to  state 
the  questions  in  such  a  way  that  no  knowledge  of  physics  is  required. 
For  instance,  one  question  asks  for  a  solution  of  a  certain  partial 
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differential  equation  in  terms  of  certain  constants  and  variables. 
This  may  be  regarded  as  a  piece  of  pure  mathematics,  but  it  is 
immediately  followed  by  a  note  pointing  out  that  the  work  refers 

to  a  well-known  experiment  in  heat,  and  giving  the  physical  meaning 
of  the  constants  and  variables  concerned.  Finally,  at  the  end  of 

the  book  are  given  a  set  of  115  examples  of  much  greater  difficulty, 
most  of  which  are  taken  from  university  examination  papers.  [I 
have  to  thank  the  Universities  of  London,  Sheffield  and  Wales,  and 

the  Syndics  of  the  Cambridge  University  Press  for  their  kind  per- 
mission in  allowing  me  to  use  these.]  The  book  covers  the  course 

in  differential  equations  required  for  the  London  B.Sc.  Honours  or 
Schedule  A  of  the  Cambridge  Mathematical  Tripos,  Part  II.,  and 
also  includes  some  of  the  work  required  for  the  London  M.Sc.  or 

Schedule  B  of  the  Mathematical  Tripos.  An  appendix  gives  sugges- 
tions for  further  reading.  The  number  of  examples,  both  worked 

and  un worked,  is  very  large,  and  the  answers  to  the  un worked  ones 

are  given  at  the  end  of  the  book. 
A  few  special  points  may  be  mentioned.  The  graphical  method 

in  Chapter  I.  (based  on  the  MS.  kindly  lent  me  by  Dr.  Brodetsky 
of  a  paper  he  read  before  the  Mathematical  Association,  and  on  a 
somewhat  similar  paper  by  Prof.  Takeo  Wada)  has  not  appeared 

before  in  any  text-book.  The  chapter  dealing  with  numerical 
integration  deals  with  the  subject  rather  more  fully  than  usual. 
It  is  chiefly  devoted  to  the  methods  of  Runge  and  Picard,  but  it 
also  gives  an  account  of  a  new  method  due  to  the  present  writer. 

The  chapter  on  linear  differential  equations  with  constant  co- 

efficients avoids  the  unsatisfactory  proofs  involving  "  infinite  con- 

stants." It  also  points  out  that  the  use  of  the  operator  D  in  finding 
particular  integrals  requires  more  justification  than  is  usually  given. 
The  method  here  adopted  is  at  first  to  use  the  operator  boldly  and 
obtain  a  result,  and  then  to  verify  this  result  by  direct  differentiation. 

This  chapter  is  followed  immediately  by  one  on  Simple  Partial 

Differential  Equations  (based  on  Riemann's  "  Partielle  Differential  - 
gleichungen ").  The  methods  given  are  an  obvious  extension  of 
those  in  the  previous  chapter,  and  they  are  of  such  great  physical 
importance  that  it  seems  a  pity  to  defer  them  until  the  later  portions 
of  the  book,  which  is  chiefly  devoted  to  much  more  difficult  subjects. 

In  the  sections  dealing  with  Lagrange's  linear  partial  differential 
equations,  two  examples  have  been  taken  from  M.  J.  M.  Hill's 
recent  paper  to  illustrate  his  methods  of  obtaining  special  integrals. 
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In  dealing  with  solution  in  series,  great  prominence  has  been 
given  to  the  method  of  Frobenius.  One  chapter  is  devoted  to  the 
use  of  the  method  in  working  actual  examples.  This  is  followed 

by  a  much  harder  chapter,  justifying  the  assumptions  made  and 
dealing  with  the  difficult  questions  of  convergence  involved.  An 
effort  has  been  made  to  state  very  clearly  and  definitely  where  the 
difficulty  lies,  and  what  are  the  general  ideas  of  the  somewhat 

complicated  proofs.  It  is  a  common  experience  that  many  students 

when  first  faced  by  a  long  "  epsilon-proof  "  are  so  bewildered  by 
the  details  that  they  have  very  little  idea  of  the  general  trend. 

I  have  to  thank  Mr.  S.  Pollard,  B.A.,  of  Trinity  College,  Cambridge, 
for  his  valuable  help  with  this  chapter.  This  is  the  most  advanced 

portion  of  the  book,  and,  unlike  the  rest  of  it,  requires  a  little  know- 

ledge of  infinite  series.  However,  references  to  standard  text-books 
have  been  given  for  every  such  theorem  used. 

I  have  to  thank  Prof.  W.  P.  Milne,  the  general  editor  of  Bell's 
Mathematical  Series,  for  his  continual  encouragement  and  criticism, 
and  my  colleagues  Mr.  J.  Marshall,  M.A.,  B.Sc,  and  Miss  H.  M. 

Browning,  M.Sc,  for  their  work  in  verifying  the  examples  and 
drawing  the  diagrams. 

I  shall  be  very  grateful  for  any  corrections  or  suggestions  from 
those  who  use  the  book. 

H.  T.  H.  PIAGGIO. 

University  College,  Nottingham, 
February,   1920. 
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HISTORICAL   INTRODUCTION 

The  study  of  Differential  Equations  began  very  soon  after  the 
invention  of  the  Differential  and  Integral  Calculus,  to  which  it 
forms  a  natural  sequel.  Newton  in  1676  solved  a  differential 
equation  by  the  use  of  an  infinite  series,  only  eleven  years  after 
his  discovery  of  the  fluxional  form  of  the  differential  calculus  in 
1665.  But  these  results  were  not  published  until  1693,  the  same 
year  in  which  a  differential  equation  occurred  for  the  first  time  in 

the  work  of  Leibniz  *  (whose  account  of  the  differential  calculus 
was  published  in  1684). 

In  the  next  few  years  progress  was  rapid.  In  1694-97  John 

Bernoulli  f  explained  the  method  of  "  Separating  the  Variables,"  and 
he  showed  how  to  reduce  a  homogeneous  differential  equation  of 
the  first  order  to  one  in  which  the  variables  were  separable.  He 
applied  these  methods  to  problems  on  orthogonal  trajectories.  He 

and  his  brother  Jacob  ft  (after  whom  "  Bernoulli's  Equation  "  is 
named)  succeeded  in  reducing  a  large  number  of  differential  equa- 

tions to  forms  they  could  solve.  Integrating  Factors  were  probably 
discovered  by  Euler  (1734)  and  (independently  of  him)  by  Fontaine 
and  Clairaut,  though  some  attribute  them  to  Leibniz.  Singular 
Solutions,  noticed  by  Leibniz  (1694)  and  Brook  Taylor  (1715),  are 

generally  associated  with  the  name  of  Clairaut  (1734).  The  geo- 
metrical interpretation  was  given  by  Lagrange  in  1774,  but  the 

theory  in  its  present  form  was  not  given  until  much  later  by  Cayley 
(1872)  and  M.  J.  M.  Hill  (1888). 

The  first  methods  of  solving  differential  equations  of  the  second 
or  higher  orders  with  constant  coefficients  were  due  to  Euler. 

D'Alembert  dealt  with  the  case  when  the  auxiliary  equation  had 
equal  roots.  Some  of  the  symbolical  methods  of  finding  the  par- 

ticular integral  were  not  given  until  about  a  hundred  years  later 
by  Lobatto  (1837)  and  Boole  (1859). 

The  first  partial  differential  equation  to  be  noticed  was  that 
giving  the  form  of  a  vibrating  string.  This  equation,  which  is  of 

the  second  order,  was  discussed  by  Euler  and  D'Alembert  in  1747. 
Lagrange  completed  the  solution  of  this  equation,   and  he  also 

*  Also  spelt  Leibnitz.         f  Also  spelt  Bcrnouilli.         ft  Also  known  as  James. 
xv 



XVI  HISTORICAL  INTRODUCTION 

dealt,  in  a  series  of  memoirs  from  1772  to  1785,  with  partial  dif- 
ferential equations  of  the  first  order.  He  gave  the  general  integral 

of  the  linear  equation,  and  classified  the  different  kinds  of  integrals 
possible  when  the  equation  is  not  linear. 

These  theories  still  remain  in  an  unfinished  state  ;  contributions 

have  been  made  recently  by  Chrystal  (1892)  and  Hill  (1917).  Other 
methods  for  dealing  with  partial  differential  equations  of  the  first 
order  were  given  by  Charpit  (1784)  and  Jacobi  (1836).  For  higher 
orders  the  most  important  investigations  are  those  of  Laplace  (1773), 
Monge  (1784),  Ampere  (1814),  and  Darboux  (1870). 

By  about  1800  the  subject  of  differential  equations  in  its  original 
aspect,  namely  the  solution  in  a  form  involving  only  a  finite  number 
of  known  functions  (or  their  integrals),  was  in  much  the  same  state 

as  it  is  to-day.  At  first  mathematicians  had  hoped  to  solve  every 
differential  equation  in  this  way,  but  their  efforts  proved  as  fruitless 
as  those  of  mathematicians  of  an  earlier  date  to  solve  the  general 
algebraic  equation  of  the  fifth  or  higher  degree.  The  subject  now 
became  transformed,  becoming  closely  allied  t<5  the  Theory  of 
Functions.  Cauchy  in  1823  proved  that  the  infinite  series  obtained 
from  a  differential  equation  was  convergent,  and  so  really  did 
define  a  function  satisfying  the  equation.  Questions  of  convergency 
(for  which  Cauchy  was  the  first  to  give  tests)  are  very  prominent 

in  all  the  investigations  of  this  second  period  of  the  study  of  dif- 
ferential equations.  Unfortunately  this  makes  the  subject  very 

abstract  and  difficult  for  the  student  to  grasp.  In  the  first  period 
the  equations  were  not  only  simpler  in  themselves,  but  were  studied 
in  close  connection  with  mechanics  and  physics,  which  indeed  were 
often  the  starting  point  of  the  work. 

Cauchy's  investigations  were  continued  by  Briot  and  Bouquet 
(1856),  and  a  new  method,  that  of  "  Successive  Approximations," 
was  introduced  by  Picard  (1890).  Fuchs  (1866)  and  Frobenius 
(1873)  have  studied  linear  equations  of  the  second  and  higher 

orders  with  variable  coefficients.  Lie's  Theory  of  Continuous 
Groups  (from  1884)  has  revealed  a  unity  underlying  apparently 
disconnected  methods.  Schwarz,  Klein,  and  Goursat  have  made 

their  work  easier  to  grasp  by  the  introduction  of  graphical  con- 
siderations, and  a  recent  paper  by  Wada  (1917)  has  given  a  graphical 

representation  of  the  results  of  Picard  and  Poincarr.  Runge  (1895) 
and  others  have  dealt  with  numerical  approximations. 

Further  historical  notes  will  be  found  in  appropriate  places 
throughout  the  book.  For  more  detailed  biographies,  see  Rouse 

Ball's  Short  History  of  Mathematics. 



CHAPTER  I 

INTRODUCTION  AND  DEFINITIONS.    ELIMINATION. 
GRAPHICAL  REPRESENTATION 

^=-P2y,   (i) 

1.  Equations  such  as 

dx2 

Miyf-g   <3> 
dv=     t    u) 
dx    y^l+x1)' 

dt2        dx2'    
{0) 

involving  differential  coefficients,  are  called  Differential  Equations. 

2.  Differential  Equations  arise  from  many  problems  in  Algebra, 
Geometry,  Mechanics,  Physics,  and  Chemistry.  In  various  places 

in  this  book  we  shall  give  examples  of  these,  including  applications 
to  elimination,  tangency,  curvature,  envelopes,  oscillations  of 
mechanical  systems  and  of  electric  currents,  bending  of  beams, 
conduction  of  heat,  diffusion  of  solvents,  velocity  of  chemical 
reactions,  etc. 

3.  Definitions.  Differential  equations  which  involve  only  one 

independent  variable,*  like  (1),  (2),  (3),  and  (4),  are  called  ordinary. 
Those  which  involve  two  or  more  independent  variables  and 

partial  differential  coefficients  with  respect  to  them,  such  as  (5),  are 
called  partial. 

*  In  equations  (1),  (2),  (3),  (4)  x  is  the  independent  and  y  the  dependent  variable. 
In  (5)  x  and  (  are  the  two  independent  variables  and  y  the  dependent. 
p.d.e.  a  S 
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An  equation  like  (1),  which  involves  a  second  differential  co- 

efficient, but  none  of  higher  orders,  is  said  to  be  of  the  second  order 

(4)  is  of  the  first  order,  (3)  and  (5)  of  the  second;  and  (2)  of  the  third. 

The  degree  of  an  equation  is  the  degree  of  the  highest  differential 

coefficient  when  the  equation  has  been  made  rational  and  integral 

as  far  as  the  differential  coefficients  are  concerned.  Thus  (1),  (2), 

(4)  and  (5)  are  of  the  first  degree. 

(3)  must  be  squared  to  rationalise  it.     We  then  see  that  it  is  of 
d2v 

the  second  degree,  as  j~  occurs  squared. 

Notice  that  this  definition  of  degree  does  not  require  x  or  y  to 

occur  rationally  or  integrally. 

Other  definitions  will  be  introduced  when  they  are  required. 

4.  Formation    of    differential    equations    by    elimination.      The 

problem  of  elimination  will  now  be  considered,  chiefly  because  it 

gives  us  an  idea  as  to  what  kind  of  solution  a  differential  equation 

may  have. 
We  shall  give  some  examples  of  the  elimination  of  arbitrary 

constants  by  the  formation  of  ordinary  differential  equations.  Later 

(Chap.  IV.)  we  shall  see  that  partial  differential  equations  may  be 

formed  by  the  elimination  of  either  arbitrary  constants  or  arbitrary 
functions. 

5.  Examples. 

(i)  Consider  x  =  A  cos  (pt- a),  the  equation  of  simple  harmonic 
motion.     Let  us  eliminate  the  arbitrary  constants  A  and  a. 

Differentiating,  -=-  =  -pA  sin  (pt  -  a) 

d2x 
and  -572  =  -  p2A  cos  (pt  -a)=  -  p2x. 

d2x 
Thus  -j-g  =  -p2x  is  the  result  required,  an  equation  of  the  second 

order,  whose  interpretation  is  that  the  acceleration  varies  as  the  distance 
from  the  origin. 

(ii)  Eliminate  p  from  the  last  result. 
d  x  dx 

Differentiating  again,        -5-3  =  -  p2  -57  • 

d?x  \  dx  d x  \ 

Hence        -373    -57  = - -p' J  = ■■-,■■{  •  x,  (from  the  last  result). 

3,'X       Q.X     d  X 

Multiplying  up,  x .  -=-3  »  -j-  •  j-§,  an  equation  of  the  third  order. 
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(iii)  Form  the  differential  equation  of  all  parabolas  whose  axis  is 
the  axis  of  x. 

Such  a  parabola  must  have  an  equation  of  the  form 

y2  =  ia(x-h). 

Differentiating  twice,  we  get 

i.e.     yd£=2a, 
(L    11         i '(Lti\ 

and  Vj\+  \y)  =  ̂>  wn^cn  w  °f  the  second  order. 

Examples  for  solution. 

Eliminate  the  arbitrary  constants  from  the  following  equations  : 

(1)  y  =  Ae2x  +  Be~2x.  (2)  y  =  A  cos  3x  +  B  sin  3x. 

(3)  y  =  AeBx.  (4)  y  =  Ax  +  A*. 

(5)  If  x2  +  y2  =  a2,^  prove  that  j-=  --,  and  interpret  the  result 
geometrically.  & 

(6)  Prove  that  for  any  straight  line  through  the  origin  -»^,  and 
interpret  this.  *     dx 

d2u (7)  Prove  that  for  any  straight  line  whatever  -r\  =  0.    Interpret 
this.  dx 

6.  To  eliminate  n  arbitrary  constants  requires  (in  general)  a  differ- 

ential equation  of  the  n^  order.  The  reader  will  probably  have 
arrived  at  this  conclusion  already,  from  the  examples  of  Art.  5. 

If  we  differentiate  n  times  an  equation  containing  n  arbitrary  con- 
stants, we  shall  obtain  (n  +  1)  equations  altogether,  from  which  the 

n  constants  can  be  eliminated.  As  the  result  contains  an  nth  differ- 

ential coefficient,  it  is  of  the  nth  order.* 

*  The  ?'-^ument  in  the  text  is  that  usually  given,  but  the  advanced  student 
will  notice  some  weak  points  in  it.  The  statement  that  from  any  (n  +  1)  equations 
n  quantities  can  be  eliminated,  whatever  the  nature  of  those  equations,  is  too  sweeping. 
An  exact  statement  of  the  necessary  and  sufficient  conditions  would  be  extremely 
complicated. 

Sometimes  less  than  (n  +  1)  equations  are  required.  An  obvious  case  is 
y  =  (A  +  B)x,  where  the  two  arbitrary  constants  occur  in  such  a  way  as  to  be 
really  equivalent  to  one. 

A  less  obvious  case  is  y2=2Axy  +  Bx2.  This  represents  two  straight  lines 
through  the  origin,  say  y  =  mlx  and  y=m2x,  from  each  of  which  we  easily  get 

-= j-,  of  the  first  instead  of  the  second  order.     The  student  should  also  obtain x    dx 

this  result  by  differentiating  the  original  equation  and  eliminating  B.     This  will 
give  .  ,  . 

[y-x£)(y-Ax)  =  0. 
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7.  The  most  general  solution  of  an  ordinary  differential  equation  of 

the  nth  order  contains  n  arbitrary  constants.  This  will  probably  seem 
obvious  from  the  converse  theorem  that  in  general  n  arbitrary  con- 

stants can  be  eliminated  by  a  differential  equation  of  the  nth  order. 
But  a  rigorous  proof  offers  much  difficulty. 

If,  however,  we  assume  *  that  a  differential  equation  has  a  solution 
expansible  in  a  convergent  series  of  ascending  integral  powers  of 
x,  we  can  easily  see  why  the  arbitrary  constants  are  n  in  number. 

Consider,  for  example,  ̂ -|  =  ̂,  of  order  three. 

Assume  that  y  =  a0  +  a1x+a2^  + ...  +  aM— f  + ...  to  infinity. 

Then,  substituting  in  the  differential  equation,  we  get 
X2  Xn~3...  x2  xn~x 

so  a3=av 
ai  =  a2, 

tt5=a3=0!l> 

/         X3       X5  \  (x2       X*       T6  \ 

Hence    y-*+^+S+fl  +  "0+<2!+II  +  fl+"0 
=  aQ+ai  sinh x  +  a2 (cosh x - 1), 

containing  three  arbitrary  constants,  a0,  ax  and  a2. 
Similar  reasoning  applies  to  the  equation 

^y=f(r  „  <k  ̂ i      dn~ly\ dxn  j\x>  y>  dx>  dxv  ••>  dxn~ij- 

In  Dynamics  the  differential  equations  are  usually  of  the  second 

order,  e.g.  -j-f  +p2y=0,  the  equation  of  simple  harmonic  motion. 

To  get  a  solution  without  arbitrary  constants  we  need  Iwo  con- 

ditions, such  as  the  value  of  y  and  dyjdt  when  t  =  0,  giving  the  initial 
displacement  and  velocity. 

8.  Complete  Primitive,  Particular  Integral,  Singular  Solution.  The 

solution  of  a  differential  equation  containing  the  full  number  of 
arbitrary  constants  is  called  the  Complete  Primitive. 

Any  solution  derived  from  the  Complete  Primitive  by  giving 
particular  values  to  these  constants  is  called  a  Particular  Integral. 

*  The  student  will  see  in  later  chapters  that  this  assumption  is  not  always justifiable. 
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Thus  the  Complete  Primitive  of  -t4=-j r  dx3    dx 

is  y  =  aQ+a1  sinh  x+a2  (cosh  x  - 1), 

or  ?/  =  c  +  «j  sinh  x+a2  cosh  a;,  where  c  =  aQ-  a2, 

or  y=c+aea!+&e~a;,  where  a  =  l(a1+a2)  and  6  =  |(a2-«i)- 
This  illustrates  the  fact  that  the  Complete  Primitive  may  often 

be  written  in  several  different  (but  really  equivalent)  ways. 

The  following  are  Particular  Integrals  :      , 

y=4,  taking    c  =  4,  a1=a2=0; 

y  =  5smhx,         taking  0^=5,    c  =  a2=0; 

y  =  6  cosh  z  -  4,    taking  a2  =  6,  ax  =0,  c  =  -  4  ; 

y  =  2+ex-3e~x,  taking   c  =  2,    a  =  l,  6= -3. 
In  most  equations  every  solution  can  be  derived  from  the  Com- 

plete Primitive  by  giving  suitable  values  to  the  arbitrary  constants. 
Bowever,  in  some  exceptional  cases  we  shall  find  a  solution,  called 
a  Singular  Solution,  that  cannot  be  derived  in  this  way.     These  will 
be  discussed  in  Chap.  VI. 

Examples  for  solution. 

Solve  by  the  method  of  Art.  7  : 

«  ■£*  • 

«  3--* 
(3)  Show  that  the  method  fails  for  ■£-—  -. x  '  ax     x 

[log  as  cannot  be  expanded  in  a  Maclaurin  series.] 

(4)  Verify  by  elimination  of  c  that  y  =  ca;  +  -  is  the  Complete  Primitive 

of  v  =  x  -T-  + 1  / -^ .    Verify  also  that  y2  =  ix  is  a  solution  of  the  differential 
y       dx      I  dx  J  * 

equation  not  derivable  from  the  Complete  Primitive  {i.e.  a  Singular 
Solution).     Show  that  the  Singular  Solution  is  the  envelope  of  the 
family  of  lines  represented  by  the  Complete  Primitive.     Illustrate  by 
a  graph. 

9.  Graphical  representation.  We  shall  now  give  some  examples 

of  a  method  *  of  sketching  rapidly  the  general  form  of  the  family  of 
curves  representing  the  Complete  Primitive  of 

*  Duo  to  Dr.  S.  Brodetsky  and  Prof.  Takeo  Wada. 
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where  f{x,  y)  is  a  function  of  x  and  y  having  a  perfectly  definite 

finite  value  *  for  every  pair  of  finite  values  of  x  and  y. 
The  curves  of  the  family  are  called  the  characteristics  of  the 

equation.         , 
Ex.  (i) 

Here 

Now  a  curve  has  its  concavity  upwards  when  the  second  differential 
coefficient  is  positive.  Hence  the  characteristics  will  be  concave  up 
above  y  =  \,  and  concave  down  below  this  line.  The  maximum  or 
minimum  points  lie  on  x=0,  since  dy/dx  =  0  there.  The  characteristics 
near  y  =  l,  which  is  a  member  of  the  family,  are  flatter  than  those 
further  from  it. 

These  considerations  show  us  that  the  family  ie  of  the  general  form 
shown  in  Fig.  1. 

y 

Fig.  1 

Ex.  (ii) 

Here 

dy 

d2y     dy 
-~=^r  +  ex  =  y  +  2ea dx2     dx 

We  start  by  tracing  the  curve  of  maxima  and  minima  y  +  e*  =  0, 
and  the  curve  of  inflexions  y  +  2ex  —  0.  Consider  the  characteristic 
through  the  origin.  At  this  point  both  differential  coefficients  are 
positive,  so  as  x  increases  y  increases  also,  and  the  curve  is  concave 
upwards.  This  gives  us  the  right-hand  portion  of  the  characteristic 
marked  3  in  Fig.  2.     If  we  move  to  the  left  along  this  we  get  to  the 

•Thus  excluding  a  function  hke  yjx,  which  is  indeterminate  when  a;=0  and 
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curve  of  minima.  At  the  point  of  intersection  the  tangent  is  parallel  to 
Ox.  After  this  we  ascend  again,  so  meeting  the  curve  of  inflexions. 
After  crossing  this  the  characteristic  becomes  convex  upwards.  It  still 
ascends.    Now  the  figure  shows  that  if  it  cut  the  curve  of  minima  again 

y 

Fig.  2. 

the  tangent  could  not  be  parallel  to  Ox,  so  it  cannot  cut  it  at  all,  but 
becomes  asymptotic  to  it. 

The  other  characteristics  are  of  similar  nature. 

Examples  for  solution. 
Sketch  the  characteristics  of : 

(1) dx 
y{\-x). 

(2) 
dx 

x2y. 

(3) 

dy  = 

dx 

y+x2. 
10.  Singular    points.      In  all   examples   like  those  in  the  last 

article,  we  get  one  characteristic,  and  only  one,  through  every  point 

dv  d2v 
of  the  plane.     By  tracing  the  two  curves  -g-  =0  and  j\  =0  we  can 
easily  sketch  the  system. 

If,  however,   f(x,  y)  becomes   indeterminate  for  one  or  more 

points  (called  singular  points),  it  is  often  very  difficult  to  sketch  the 
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system  in  the  neighbourhood  of  these  points.  But  the  following 
examples  can  be  treated  geometrically.  In  general,  a  complicated 

analytical  treatment  is  required.* 

Ex.  (i). ■4-=--     Here  the   origin  is  a   singular  point.     The  geo- CLOO       X 

metrical  meaning  of  the  equation  is  that  the  radius  vector  and  the 
tangent  have  the  same  gradient,  which  can  only  be  the  case  for  straight 

Fig.  3. 

lines  through  the  origin.     As  the  number  of  these  is  infinite,  in  this  case 
an  infinite  number  of  characteristics  pass  through  the  singular  point. 

Ex.(ii).  *--?,     i.e.  *.*--l. 
ax        y  x    Gfe 

This  means  that  the  radius  vector  and  the  tangent  have  gradients 

whose  product  is    -1,  i.e.  that  they  are  perpendicular.     The  char- 
acteristics are  therefore  circles  of  any  radius  with  the  origin  as  centre. 

*  See  a  paper,  "  Graphical  Solution,"  by  Prof.  Takeo  Wada,  Memoirs  of  the 
College  of  Science,  Kyoto  Imperial  University,  Vol.  II.  No.  3,  July  1917. 
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In  this  case  the  singular  point  may  be  regarded  as  a  circle  of  zero  radius, 
the  limiting  form  of  the  characteristics  near  it,  but  no  characteristic  of 
finite  size  passes  through  it. 

Bx.(iH).  P'*^- v  ax     x  +  ky 

Writing  dy/dx=>ta,n\fs,  y/x  =  tan  6,  we  get 

,       tan  0-k tan^  =  l+fctan0' 

i.e.     tan  \f,  +  k  tan  \\r  tan  0  =  tan  6-k, 
tan  0  -  tan  \[s i.e. 

k, 

1  +  tan  6  tan  \/r 

i.e.    tan  (d-\fs)  =  k,  a  constant. 
The  characteristics  are  therefore  equiangular  spirals,  of  which  the 

singular  point  (the  origin)  is  the  focus. 

Fig.  5. 

These   three    simple   examples   illustrate   three   typical  cases. 
Sometimes  a  finite  number  of  characteristics  pass  through  a  singular 

point,  but  an  example  of  this  would  be  too  complicated  to  give 

here.* 
*  See  Wada's  paper. 
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MISCELLANEOUS  EXAMPLES  ON  CHAPTER  I. 

Eliminate  the  arbitrary  constants  from  the  following  : 

(1)  y  =  Aex  +  Berx  +  C. 
(2)  y  =  Aex  +  Be2x  +  C<?x. 
[To  eliminate  A,  B,C  from  the  four  equations  obtained  by  successive 

differentiation  a  determinant  may  be  used.] 

(3)  y  =  ex (A  cos  x  +  B  sin  x), 

(4)  y  =  c  cosh  -,  (the  catenary). c 

Find  the  differential  equation  of 

(5)  All  parabolas  whose  axes  are  parallel  to  the  axis  of  y. 
(6)  All  circles  of  radius  a. 

(7)  All  circles  that  pass  through  the  origin. 

(8)  All  circles  (whatever  their  radii  or  positions  in  the  plane  xOy). 
[The  result  of  Ex.  6  may  be  used.] 

(9)  Show  that  the  results  of  eliminating  a  from 

2y=xd£+ax>   (1) 
)  dy 

and  b  from  y  =  x-j--bx2,      (2) 
d  y         dy 

are  in  each  case  x2^A,-2x^-  +  2y  =  0   (3) 
dx2         dx      J  v  ' 

[The  complete  primitive  of  equation  (1)  must  satisfy  equation  (3), 
since  (3)  is  derivable  from  (1).  This  primitive  will  contain  a  and  also 
an  arbitrary  constant.  Thus  it  is  a  solution  of  (3)  containing  two 
constants,  both  of  which  are  arbitrary  as  far  as  (3)  is  concerned,  as  a 
does  not  occur  in  that  equation.  In  fact,  it  must  be  the  complete 
primitive  of  (3).  Similarly  the  complete  primitives  of  (2)  and  (3)  are 
the  same.     Thus  (1)  and  (2)  have  a  common  complete  primitive.] 

(10)  Apply  the  method  of  the  last  example  to  prove  that 

y+y  =  2aex dx 

■and  y-^~  =  2be-x 

*    dx 

have  a  common  complete  primitive. 

(11)  Assuming  that  the  first  two  equations  of  Ex.  9  have  a  common 
dlJ 

complete  primitive,  find  it  by  equating  the  two  values  of  ~  in  terms 

of  x,  y,  and  the  constants.     Verify  that  it  satisfies  equation  (3)  of  Ex.  9. 

(12)  Similarly  obtain  the  common  complete  primitive  of  the  two 
equations  of  Ex.  10. 
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(13)  Prove  that  all  curves  satisfying  the  differential  equation 

ax  \dx/  ax* 

cut  the  axis  of  y  at  45°. 
(14)  Find  the  inclination  to  the  axis  of  x  at  the  point  (1,  2)  of  the 

two  curves  which  pass  through  that  point  and  satisfy 

(|)V-2z  +  *s
. (15)  Prove  that  the  radius  of  curvature  of  either  of  the  curves  of 

Ex.  14  at  the  point  (1,  2)  is  4. 

(16)  Prove  that  in  general  two  curves  satisfying  the  differential 
equation 

•0EN2+i-« pass  through  any  point,  but  that  these  coincide  for  any  point  on  a 
certain  parabola,  which  is  the  envelope  of  the  curves  of  the  system. 

(17)  Find  the  locus  of  a  point  such  that  the  two  curves  through  it 
satisfying  the  differential  equation  of  Ex.  (16)  cut  (i)  orthogonally ; 

(ii)  at  45°. 

(18)  Sketch  (by  Brodetsky  and  Wada's  method)  the  characteristics  of 

ax 



CHAPTER   II 

EQUATIONS  OF  THE  FIRST  ORDER  AND  FIRST  DEGREE 

11.  In  this  chapter  we  shall  consider  equations  of  the  form 

M+N^=0, ax 

where  M  and  N  are  functions  of  both  x  and  y. 

This  equation  is  often  written,*  more  symmetrically,  as 
Mdx+Ndy=0. 

Unfortunately  it  is  not  possible  to  solve  the  general  equation  of 
this  form  in  terms  of  a  finite  number  of  known  functions,  but  we 

shall  discuss  some  special  types  in  which  this  can  be  done. 
It  is  usual  to  classify  these  types  as 

(a)  Exact  equations  ;    • 

(b)  Equations  solvable  by  separation  of  the  variables  ;  - 
(c)  Homogeneous  equations  ;  • 
(d)  Linear  equations  of  the  first  order.   • 

The  methods  of  this  chapter  are  chiefly  due  to  John  Bernouilli 

of  Bale  (1667-1748),  the  most  inspiring  teacher  of  his  time,  and  to 
his  pupil,  Leonhard  Euler,  also  of  Bale  (1707-1783).  Euler  made 
great  contributions  to  algebra,  trigonometry,  calculus,  rigid  dynamics, 
hydrodynamics,  astronomy  and  other  subjects. 

12.  Exact  equations,  f 

Ex.  (i).  The  expression  ydx  +  xdy  is  an  exact  differential. 

Thus  the  equation  ydx  +  xdy  =  0, 

giving  d{yx)=0, 
i.e.  yx  =  c, 

is  called  an  exact  equation. 

*  For  a  rigorous  justification  of  the  use  of  the  differentials  dx  and  dy  see  Hardy's Pure  Mathematics,  Art.  136. 

t  For  the  necessary  and  sufficient  condition  that  Mdx  +  Ndy  =  0  should  be  exact 
see  Appendix  A. 

12 
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Ex.  (ii).  Consider  the  equation  tan  y  .  tfo  +  tan  x  .  dy  =  0. 
This  is  not  exact  as  it  stands,  but  if  we  multiply  by  cos  x  cos  y  it 

becomes  sin  y  COs  x  dx  +  sin  x  cos  y  dy  =  0, 
which  is  exact. 

The  solution  is  sin  y  sin  x  =  c.  y 

13.  Integrating  factors.  In  the  last  example  cos  x  cos  y  is 
called  an  integrating  factor,  because  when  the  equation  is  multiplied 
by  it  we  get  an  exact  equation  which  can  be  at  once  integrated. 

There  are  several  rules  which  are  usually  given  for  determining 
integrating  factors  in  particular  classes  of  equations.  These  will  be 

found  in  the  miscellaneous  examples  at  the  end  of  the  chapter.  The 
proof  of  these  rules  forms  an  interesting  exercise,  but  it  is  generally 
easier  to  solve  examples  without  them. 

14.  Variables  separate. 
dx 

Ex.  (i).  In  the  equation  — =tan  y  .  dy,  the  left-hand  side  involves 

x  only  and  the  right-hand  side  y  only,  so  the  variables  are  separate. 
Integrating,  we  get     log  x  =  -  log  cos  y  +  c, 

i.e.    log  (x  cos  y)  =  c, 

x  cos  y  =  ec  =  a,  say. 

Ex.  (ii).  |  =  2x*/. 
The  variables  are  not  separate  at  present,  but  they  can  easily  be 

made  so.     Multiply  by  dx  and  divide  by  y.     We  get 
—  =2xdx. 
V 

Integrating,  log  y  =  x2  +  c. 
As  c  is  arbitrary,  we  may  put  it  equal  to  log  a,  where  a  is  another 

arbitrary  constant. 

Thus,  finally,  y  =  aex2. 
Examples  for  solution. 

(1)  (12x  +  5y-9)dx  +  (5x  +  2y-4)dy  =  0. 

(2)  {cos  x  tan  y  +  cos  (x  +  y)}  dx.+ {sin  x  sec2  y  +  cos  (x  +  y)}  dy  =  0. 
(3)  (sec  x  tan  x  tan  y  -  ex)  dx  +  sec  x  sec2  y  dy  -■=  0. 

*  (4)  (x  +  y)  (dx  -  dy)  =dx  +  dy. 
.  (5)  ydx-xdy  +  Sx^e^dx  =  0. 
(6)  y  dx  -  x  dy  =  0. 

• "  (7)  (sin  x  +  cos  x)  dy  +  (cos  x  -  sin  x)  dx  =  0. 

•<8)  g=*y. 
,{9)  y  dx-x  dy  =  xy  dx.  (10)  tan  x  dy  =  cot  y  dx. 
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15.  Homogeneous   equations.      A  homogeneous  equation  of  the 
first  order  and  degree  is  one  which  can  be  written  in  the  form dy=f(y\ 

dx    J  \x/ 

To  test  whether  a  function  of  x  and  y  can  be  written  in  the  form 

of  the  right-hand  side,  it  is  convenient  to  put 
y 
-=v    or    y=vx. 
00 

If  the  result  is  of  the  formf(v),  i.e.  if  the  x's  all  cancel,  the 
test  is  satisfiM. 

-,      ...    dy     x2  +  y2  ,  dy     \+v2      m, .  -.       .    , 
Ex.  (i).  j^=        g     becomes  -f-=  .    This  equation  is  homo- 

geneous.     dx       Zx  dx        l 
diJ     w  da 

Ex.  (ii).  ̂ =^2  becomes  -^-  =  xvz.     This  is  not  homogeneous. CLOO       00  (LOO       — 

16.  Method  of  solution.     Since  a  homogeneous  equation  can  be 
dy 

reduced  to  ̂ f-=f(v)  by  putting  y=vx  on  the  right-hand  side,  it  is 

natural  to  try  the  effect  of  this  substitution  on  the  left-hand  side 
also.  As  a  matter  of  fact,  it  will  be  found  that  the  equation  can 

always  be  solved  *  by  this  substitution  (see  Ex.  10  of  the  miscel- 
laneous set  at  the  end  of  this  chapter). 

Ex.  (i).  f^  =  ̂ . w  dx       2x2 

Put  y=vx, 

i.e.    -jr**v+z-z->  i for  if  y  is  a  function  of  x,  so  is  v). 
dx  dx  v  9  ' 

_,,  .  dv     1  +  v2 
The  equation  becomes    v  +  x-z-  = — ~ — , 

Separating  the  variables, 

i.e.     2x  dv  =  (1  +  v2  -  2v)  dx. 
2dv       dx 

(v-l)2      x 

—  2 

Integrating,  — -  =  logx  +  c. 

y  -2  _    -2       - 2x _   2x 

u'  v~x'     °  vzi~y_1~y-x~x-y' X 

Multiplying  by  x-y,    2x  =  (x  -  y)  (log  x  +  c) . 

*  By  "  solved  "  we  mean  reduced  to  an  ordinary  integration.     Of  course,  this 
integral  may  not  be  expressible  in  terms  of  ordinary  elementary  functions. 
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Ex.  (ii).  (x  +  y)  dy  +  (x  -  y)  dx  =  0. 

m,.      .  dy     y-x 
This  gives  ~  =  - —  • dx     y  +  x 

Putting  y  =  vx,  and  proceeding  as  before,  we  get 

dv     v-1 
dx     v  +  l 

dv     v-l  v2  +  l 
i.e.     x^-= — --«  =   -. dx     v  +  l  v  +  l 

(v  +  l)dv     dx 
Separating  the  variables,  - 

i.e. 

v2  +  l         x 

v  dv       dv       dx 

v2  +  l      v2  +  l      X 

Integrating,       -  £  log  (v2  + 1)  -  tan-1v  -  log  x  +  c, 

i.e.    2  log  x  +  log  (v2  + 1)  +  2  tan-1?;  +  2c  =  0, 

logx2(,y2  +  l)+2tan~M+a  =  0,  putting  2c  =  a. 

Substituting  for  v,  log  {y2  +  x2)  +  2  tan-1  -  +  a  =  0. •2/ 

17.  Equations  reducible  to  the  homogeneous  form. 

-n     /•*    mi  ^  dy     y-x  +  \, 
Ex.  (i).  The  equation        ■#=-   = u  dx     y  +  x  +  b 

is  not  homogeneous. 
This  example  is  similar  to  Ex.  (ii)  of  the  last  article,  except  that 

y-x  .  ,       -,  i      y-x  +  \ 
   is  replaced  by   -. 
y+x  r  J   y+x+5 

Now  y-x=0  and  y  +  x  =  0  represent  two  straight  lines  through  the 
origin. 

The  intersection  of  y-x+l=0  and  y  +  x  +  5  =  0  is  easily  found  to 
be  (-2,  -3). 

Put  x  =  X  -  2  ;  y=Y  -3.  This  amounts  to  taking  new  axes  parallel 
to  the  old  with  ( -  2,  -  3)  as  the  new  origin. 

Then  y-x  +  l  =  Y-X    and     y  +  x  +  5=Y  +  X. 

Also  dx  =  dX    and    dy  =  dY. 

The  equation  becomes       -t^>  =  -^ — =>• *  dX     Y  +  X 

As  in  the  last  article,  the  solution  is 

log(Y2  +  X2)+2tan-1^  +  a  =  0, A 

i.e.    log[(2/  +  3)2  +  (z  +  2)2]  +  2tan-1^  +  a  =  0. x  +  A 
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Ex.  (u).  /=^   -. 
dx     y-x  +  o 

This  equation  cannot  be  treated  as  the  last  example,  because  the 
lines  y-x+\=0  and  y-x  +  5  =  0  are  parallel. 

As  the  right-hand  side  is  a  function  oiy-x,  try  putting  y-x  =  z, 

dy       _dz 

dx  dx' 
The  equation  becomes       1  +  ̂ -  =  - — -, '  m    z  +  5 

dz      -4 
i.e.    -j-  =  — =. dx    z  +  5 

Separating  the  variables,   (z  +  5)  dz  =  -  4  dx. 

Integrating,  |z2  +  5z  =  -  4sc  +  c, 
i.e.     z2  +  10z  +  8x  =  2c. 

Substituting  for  z,  (y  -  x) 2  + 10  (y  -  x)  +  8x  =  2c, 

i.e.     (y-x)2  +  \0y  -2x  =  a,  putting  2c  =  a. 

Examples  for  solution. 

•(1)  {2x-y)dy  =  (2y-x)dx.     [Wales.] 

(2)  {x*-y2)^-  =  xy.     [Sheffield.] 

^-(3)2tH+&  [MatL Tripos-] 
.(4)  xfx  =  y  +  V(x*  +  y2)- 

dy_2x  +  9y-20 
1  '  dx     6x  +  2y-10* 

(6)  (12»  +  21y-9)flte  +  (47a?  +  40y  +  7)dy-0. 

>       dy_3x-iy-2 
[  '  dx    3x-4y-3" 
(8)  (jB  +  2y)(ia5-dy)=*B  +  dy. 

18.  Linear  equations. 

The  equation  ~£+Py  =  ®' 

where  P  and  Q  are  functions  of  x  (but  not  of  y),  is  said  to  be  linear 

of  the  first  order. 
',    .    dy     1  „ 

A  simple  example  is  -^  +  -  .  y  =x2. 

{ 
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If  we  multiply  each  side  of  this  by  x,  it  becomes 

xix+y=x> 

ie'    dx^=X^ 

Hence,  integrating,  xy  =  \x*  +  c. 

We  have  solved  this  example  by  the  use  of  the  obvious  integrating 
factor  x. 

19.  Let  us  try  to  find  an  integrating  factor  in  the  general  case. 
If  R  is  such  a  factor,  then  the  left-hand  side  of 

Rfx  +  RPy  =  RQ 
is  the  differential  coefficient  of  some  product,  and  the  first  term 

R  -j-  shows  that  the  product  must  be  Ry. 

Put,  therefore,  R^+RPy=-^(Ry)  =#^  +  y~. 

This  gives  RPy  =  y-^, 

i.e.       Pdx  =  -n, li 

i.e. ipdx=logR, 
[Pdx 

This  gives  the  rule  :   To  solve  -j-  +Py  =  Q,  multiply  each  side  by 
\pdx e       ,  which  will  be  an  integrating  factor. 

20.  Examples. 

(i)  Take  the  example  considered  in  Art.  18. 

ty  .  1  2 
-T-+-  .y=<c2. ax    x. 

HereP  =  -,  so  \Pdx  =  logx,  and  elo«r=x.. 

Thus  the  rule  gives  the  same  integrating  factor  that  we  used  before. 

(ii)  g  +  2a*/  =  2<r*\ 

Here  P  =  2x,   \Pdx  =  x2,  and  the  integrating  factor  is  e**. 
P.D.E.  B 

:- 
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Multiplying  by  this,      e*2  ~-  +  2xex%y  =  2, 

Integrating,  yex*  =  2x  +  c, 

y  =  (2x  +  c)e-°fi. 

(is,  t+%-*2* 
Here  the  integrating  factor  is  e3x. 

Multiplying  by  this,      e3*  ̂   +  ̂xy  ~  &x> 
a 

i.e.    j-(yeZx)-e5x. 

Integrating,  ye3  x  =  -te5  x  +  c, 

y  =  -Lg2*  +  ce-3*. 
21.  Equations  reducible  to  the  linear  form. 

Ex.  (i).  xy-^-yh-*. 

Divide  by  yz,  so  as  to  free  the  right-hand  side  from  y. 
ttT  1      1  dy        ̂  

We  get  .tjS.     jg.^, 
1     1  <Z  /l 

$-*
• 

Putting  ̂   =  2»  2a»  +  -=-  =  2e~- 

i/2    2  cfoVy5 
1  <fc 

This  is  linear  and,  in  fact,  is  similar  to  Ex.  (ii)  of  the  last  article  with 
2  instead  of  y. 

Hence  the  solution  is  z  =  (2x  +  c)  e~x\ 

i.e.    —  =  {2x  +  c)e~x\ 

y2
 

ei*2 

'J{2x+o) 

This  example  is  a  particular  case  of  "  Bernoulli's  Equation  " 

where  P  and  Q  are  functions  of  x.    Jacob  Bernouilli  or  Bernoulli  ol 

Bale  (1654-1705)  studied  it  inl695. 
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Ex.  (ii). 
(2*-i(y)  d£+y=o. 

fix 
This  is  not  linear  as  it  stands,  but  if  we  multiply  by  -=-,  we  get 

2z-i(y+</|=o,     • dx    2x    ,.  „ 
i.e.     -T-+—  =  10w2. 

dy     y 

This  is  linear,  considering  y  as  the  independent  variable. 
Proceeding  as  before,  we  find  the  integrating  factor  to  be  y2,  and 

the  solution  2      o  *,  , 
y2x  =  2y5  +  c,  , 

i.e.    a:  =  2?/3  +  c?/"-2. 
Examples  for  solution. 

/(I)  (*  +  a)j|-8y-(a>  +  a)«.     [Wales.] 

%(2)  a;cosa;^  +  «/(a;sincc  +  cosaj)  =  l.     [Sheffield.] 

•(3)  xloga?^  +  «/  =  21ogcc.  (4)  x2y  -  x*  j-  =  y*  cos  x. 

-7(5)  y  +  2fx  =  f(x-l). .(6)  (*  +  2jfl|[-y. 

•  (7)  dx  +  xdy  =  e~v  sec2y  dy. 

22.  Geometrical  Problems.  Orthogonal  Trajectories.  We  shall 

now  consider  some  geometrical  problems  leading  to  differential 
equations. 

y 

Ex.  (i).  Find  the  curve  whose  subtangent  is  constant. 

The  sttbtangent  TN  =  PN  cot  yj,  =  y  ~  . 
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Hence  y  -y-  -  k, 

*dy 

dx  =  k—, 
y 

x  +  c  =  k  log  y, 

putting  the  arbitrary  constant  c  equal  to  k  log  a. 

Ex.  (ii).  Find  the  curve  such  that  its  length  between  any  two 
points  PQ  is  proportional  to  the  ratio  of  the  distances  of  Q  and  P 
from  a  fixed  point  0. 

If  we  keep  P  fixed,  the  arc  QP  will  vary  as  OQ. 

Use  polar  co-ordinates,  taking  0  as  pole  and  OP  as  initial  line. 
Then,  if  Q  be  (r,  6),  we  have        s  —  ̂ r> 

But,  as  shown  in  treatises  on  the  Calculus, 

(ds)*  =  (rdd)z  +  (dr)2. 
Hence,  in  our  problem, 

k*  (dr) 2  =  (rd6)2  +  (dr)*, 

i.e.    <Z0=±V(&2-1)- 

ldr 
=   ,  say, 

a  r 

giving  r  =  cea0,  the  equiangular  spiral. 

Ex.  (iii).  Find  the  Orthogonal  Trajectories  of  the  family  of  semi- 
cubical  parabolas  ay2  =  x3,  where  a  is  a  variable  parameter. 

Two  families  of  curves  are  said  to  be  orthogonal  trajectories  when 
every  member  of  one  family  cuts  every  member  of  the  other  at  right 
angles. 

We  first  obtain  the  differential  equation  of  the  given  family  by 
eliminating  a. 

Differentiating  ay2  =  x3, 

we  get  2ay  -^-  =  3x2, 

whence,  by  division,  ~:r=-   (1) 
'    J  y  dx    x 

Now  ̂ =tan  \ls,  where  \lr  is  the  inclination  of  the  tangent  to  the 

dx  T 
axis  of  x.     The  value  of  \\r  for  the  trajectory,  say  rfs',  is  given  by 

\fr  =  \Js'  ±  \ir, 

i.e.    tan  \js=  -cot  yj/', 

i  e.  —  for  the  given  family  is  to  be  replaced  by  -  -j-  for  the  trajectory. dx  ay 
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Making  this  change  in  (1),  we  get 

_2dx    3 

ydy  =  x 
2xdx  +  3y  dy  =  0, 

2x2  +  3y2  =  c, 

a  family  of  similar  and  similarly  situated  ellipses. 

Ex.  (iv).  Find  the  family  of  curves  that  cut  the  family  of  spirals 
r  =  a9  at  a  constant  angle  a. 

As  before,  we  start  by  eliminating  a. 

This  gives  -j-  =  6. 

Now  — j-  =tan  <f>,  where  0  is  the  angle  between  the  tangent  and  the 

radius  vector.     If  (/>'  is  the  corresponding  angle  for  the  second  family, 
0'  =  0±a, 

,      tan  <j>  ±  tan  a       6  +  k 
tan  <A  =- — ~- — ■   =  - — r7:, 

r      l+tan0tana     1  -  kQ 

putting  in  the  value  found  for  tan  <f>  and  writing  k  instead  of  ±tan  a. 
Thus,  for  the  second  family, 

rdd^  6  +  k 

dr  ~l-kO' The  solution  of  this  will  be  left  as  an  exercise  for  the  student. 
The  result  will  be  found  to  be 

r  =  c(6  +  k)kl+1e-k9. 
Examples  for  solution. 

(1)  Find  the  curve  whose  subnormal  is  constant. 

(2)  The  tangent  at  any  point  P  of  a  curve  meets  the  axis  of  x  in  T. 
Find  the  curve  for  which  OP  —  PT,  0  being  the  origin. 

-(3)  Find  the  curve  for  which  the  angle  between  the  tangent  and 
radius  vector  at  any  point  is  twice  the  vectorial  angle. 

(4)  Find  the  curve  for  which  the  projection  of  the  ordinate  on  the 
normal  is  constant. 

Find  the  orthogonal  trajectories  of  the  following  families  of  curves  : 

(5)  x2-y2  =  a2.  •  .(6)  x$  +  y*  =  a$. 

(7)  px2  +  qy2  =  a2,  (p  and  q  constant). 

a6 

.(8)  rd  =  a.  (9)  r  = 

l+<9* 

(10)  Find  the  family  of  curves  that  cut  a  family  of  concentric  circles 
at  a  constant  angle  a. 
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MISCELLANEOUS  EXAMPLES  ON  CHAPTER  II. 

(I)  (3y*-x)d£  =  y.  (2)  *d£  =  y  +  2V(y2-x*). 

(3)  tan  x  cos  y  dy  +  sin  y  dx  +  e8'11  x  dx =0. 

(4)  x*ijt  +  Zy*  =  xyK     [Sheffield.] 

.(5)  tffx=yz+yW(y2-x*)> 

(6)  Show  that  4-     -+*+{ x  '  da;        hx  +  by+f 
represents  a  family  of  conies. 

(7)  Show  that  ydx-2xdy  =  0 
represents  a  system  of  parabolas  with  a  common  axis  and  tangent  at 
the  vertex. 

y   (8)Showthat        (4x  +  3«/  +  l)  dx  +  {3x  +  2y  +  l)  dy=0 
represents  a  family  of  hyperbolas  having  as  asymptotes  the  lines 

x  +  y  =  0    and    2x  +  y  +  l=0. 

(9)  If  J  +  2«/tanz  =  sina: 

and  y  =  0  when  x  =  \ir,  show  that  the  maximum  value  of  y  is  ̂ . 
[Math.  Tripos.] 

(10)  Show  that  the  solution  of  the  general  homogeneous  equation 

of  the  first  order  and  degree  £  =f  ( - )  is 

.  f     dv 
log  x=  \-TT-\   +C» 6     Jf(v)-V 

where  v  =  y/x. 

(II)  Prove  that  xhyk  is  an  integrating  factor  of 

py  dx  +  qxdy  +  xmyn  (ry  dx  +  sxdy)=0 
h  +  1     Jc  +  l         ,     h  +  m  +  1    k  +  n  +  l 

if    = — —    and       =   • 
p  q  r  s 

Use  this  method  to  solve 

3y  dx  -2xdy  +  x*y-l(\0y  dx  -  6x  dy)  =  0. 
(12)  By  differentiating  the  equation 

Cf(xy)  +  F(xy)  d(xy)  +1     *, 

if(xy)-F(xy)    xy         *y 

Verifythat  xy{f(xy)-F(xy)} 
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is  an  integrating  factor  of 

f(xy)  ydx  +  F  (xy)  xdy  =  0. 
Hence  solve  (x2y2  +  xy  +  l)ydx-(x2y2-xy  +  l)xdy=0. 
(13)  Prove  that  if  the  equation  M  dx  +  N  <fo/  =  0  is  exact, 

dN  =  dM 

dx      By ' [For  a  proof  of  the  converse  see  Appendix  A.] 

(14)  Verify  that  the  condition  for  an  exact  equation  is  satisfied  by 

(Pdx  +  Qdy)e$Ax)dx  =  0 

Hence  show  that  an  integrating  factor  can  always  be  found  for 

Pdx  +  Qdy  =  0 

if  if^.m 
Qldy     dx] 

is  a  function  of  x  only. 
Solve  by  this  method 

(xz  +  xy4)  dx  +  2ysdy  =  0. 
(15)  Find  the  curve  (i)  whose  polar  subtangent  is  constant ; 

(ii)  whose  polar  subnormal  is  constant. 

(16)  Find  the  curve  which  passes  through  the  origin  and  is  such 
that  the  area  included  between  the  curve,  the  ordinate,  and  the  axis 
of  x  is  k  times  the  cube  of  that  ordinate. 

(17)  The  normal  PG  to  a  curve  meets  the  axis  of  x  in  0.  If  the 
distance  of  0  from  the  origin  is  twice  the  abscissa  of  P,  prove  that  the 
curve  is  a  rectangular  hyperbola. 

(18)  Find  the  curve  which  is  such  that  the  portion  of  the  axis  of  x 
cut  off  between  the  origin  and  the  tangent  at  any  point  is  proportional 
to  the  ordinate  of  that  point. 

(19)  Find  the  orthogonal  trajectories  of  the  following  families  of 

curves:  (i)  (x-l)2  +  y2  +  2ax  =  0, 
•(ii)  r  =  a0, 

(iii)  r  =  a  +  cos  n$, 
and  interpret  the  first  result  geometrically. 

(20)  Obtain  the  differential  equation  of  the  system  of  confocal  conies 

x2     i     y2    _ 
a2  +  \    b2  +  \ 

and  hence  show  that  the  system  is  its  own  orthogonal  trajectory. 

(21)  Find  the  family  of  curves  cutting  the  family  of  parabolas 

y2  =  iax  at  45°. 
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(22)  If  u  +  iv  =f(x  +  iy),  where  u,  v,  x  and  y  are  all  real,  prove  that 
the  families  u  =  constant,  v  =  constant  are  orthogonal  trajectories. 

.,  .,  •  d2u    d2u    x     d2v    d2v 
Also  prove  that  3—0+2-2  =  0  =  5-^  +  aTi- 
r  ox1     ayi         ox1    oy* 

[This  theorem  is  of  great  use  in  obtaining  lines  of  force  and  lines  of 
constant  potential  in  Electrostatics  or  stream  lines  in  Hydrodynamics. 
u  and  v  are  called  Conjugate  Functions.] 

(23)  The  rate  of  cteca'y~oi  radium  Is  proportional  to  the  amount remaining.     Prove  that  the  amount  at  any  time  t  is  given  by 

A=AQe~kt. 

(24)  If  j  =g(}  -p)  and  v  =  0  if  *  =  0,  prove  that 

v  =  &tanh  %-• k 

[This  gives  the  velocity  of  a  falling  body  in  air.  taking  the  resistance 

of  the  air  as  proportional  to  v2.  As  t  increases,  v  approaches  the  limiting 
value  k.  A  similar  equation  gives  the  ionisation  of  a  gas  after  being 
subjected  to  an  ionising  influence  for  time  t.  ] 

(25)  Two  liquids  are  boiling  in  a  vessel.  It  is  found  that  the  ratio 

of  the  quantities  of  each  passing  off  as  vapour  at  any  instant  is  pro- 
portional to  the  ratio  of  the  quantities  still  in  the  liquid  state.  Prove 

that  these  quantities  (say  x  and  y)  are  connected  by  a  relation  of  the 

form  y  =  cxk. 

[From  Partington's  Higher  Mathematics  for  Students  of  Chemistry, 
p.  220.] 



CHAPTER  III 

LINEAR  EQUATIONS  WITH  CONSTANT  COEFFICIENTS 

23.  The  equations  to  be  discussed  in  this  chapter  are  of  the  form 

dny        dn~xy  dy  .,  .  ... 

where  f(x)  is  a  function  of  x,  but  the  p's  are  all  constant. 
These  equations  are  most  important  in  the  study  of  vibrations 

of  all  kinds,  mechanical,  acoustical,  and  electrical.  This  will  be 

illustrated  by  the  miscellaneous  examples  at  the  end  of  the  chapter. 

The  methods  to  be  given  below  are  chiefly  due  to  Euler  and 

D'Alembert.* 
We  shall  also  discuss  systems  of  simultaneous  equations  of  this 

form,  and  equations  reducible  to  this  form  by  a  simple  transformation. 

24.  The  simplest  case  ;  equations  of  the  first  order.  If  we  take 

n  =  l  and /(#)=(),  equation  (1)  becomes 

jPo|+Ay=o,   (2) 

i.e.    p0^+Pidx=0, 

or  p0  log  y  +  pxx  =  constant, 

so  log  y  =  ~Pix/pQ  +  constant 

-  -p^/po+logA,  say, 

giving  y  =  Ae~ PlX/Po. 

25.  Equations  of  the  second  order.  If  we  take  n  =  2  and  f(x)  =  0, 
equation  (1)  becomes 

ftS+Ai+fty"°   (3) 
*  Jean-le-Rond  D'Alembert  of  Paris  (1717-1783)  is  best  known  by  "  D'Alem- 

bert's  Principle  "  in  Dynamics.  The  application  of  this  principle  to  the  motion 
of  fluids  led  him  to  partial  differential  equations. 25 



26  DIFFERENTIAL  EQUATIONS 

The  solution  of  equation  (2)  suggests  that  y  =  Aemx,  where  m  is 
some  constant,  may  satisfy  (3). 

With  this  value  of  y,  equation  (3)  reduces  to 

Aemx(pQm2  +pjm  +p2)  =0. 
Thus,  if  m  is  a  root  of 

p0m2+p1m+p2=0,      (4) 

■y  =  Aemx  is  a  solution  of  equation  (3),  whatever  the  value  of  A. 
Let  the  roots  of  equation  (4)  be  a  and  {3.    Then,  if  a  and  /3  are 

unequal,  we  have  two  solutions  of  equation  (3),  namely 

y=AeoX  and  y=Bepx. 

Now,  if  we  substitute  y  =AeaZ  +  Bepx  in  equation  (3),  we  shall  get 

AeaX(p0a2  +pia  +p2)  +Be>3x(p0/32  +p±p  +p2)  =0, 
which  is  obviously  true  as  a  and  (3  are  the  roots  of  equation  (4). 

Thus  the  sum  of  two  solutions  gives  a  third  solution  (this  might 
have  been  seen  at  once  from  the  fact  that  equation  (3)  was  linear). 
As  this  third  solution  contains  two  arbitrary  constants,  equal  in 

number  to  the  order  of  the  equation,  we  shall  regard  it  as  the  general 
solution. 

Equation  (4)  is  known  as  the  "  auxiliary  equation." 
Example. 

To  solve  2  -r\  +  5  —■  +  2y =0  put  y  =  Aemx  as  a  trial  solution.     This 

leads  to  Aemx(2m2  +  5m  +  2)--=0, 
which  is  satisfied  by  m  =  -  2  or  -  f . 

The  general  solution  is  therefore 

y  =  Ae-2x  +  Be~ix. 
26.  Modification  when  the  auxiliary  equation  has  imaginary  or 

complex  roots.     When  the  auxiliary  equation  (4)  has  roots  of  the 

form  p  +  iq,  p-iq,  where  i2  =  - 1,  it  is  best  to  modify  the  solution 
y=Ae{p+iq)z+Be(p-i'i)x)   (5) 

so  as  to  present  it  without  imaginary  quantities. 
To  do  this  we  use  the  theorems  (given  in  any  book  on  Analytical 

Trigonometry)  enx  =  cos  qx  + 1  sm  qX} 
e  -  lix  =  cos  qx  -  %  sin  qx. 

Equation  (5)  becomes 

y  - epx {A (cos  qx  +  i  sin  qx)  +B(cosqx-i  sin  qx) } 
=  epx{E  cos  qx+F  sin  qx\ 

writing  E  for  A  +B  and  F  for  i(A  -B).    E  and  F  are  arbitrary 
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constants,  just  as  A  and  B  are.     It  looks  at  first  sight  as  if  F  must 
be  imaginary,  but  this  is  not  necessarily  so.     Thus,  if 

A  =  l+2i  and  B  =  \  -2i,     E  =  2  and  F  =  -4. 

Example.  ^_6^+1%m0 
leads  to  the  auxiliary  equation 

m2- 6m +  13  =  0, 
whose  roots  are  m  =  3  ±  2i. 

The  solution  may  be  written  as 

•      y  =  Ae^+^x  +  Be^~2i'>x, or  in  the  preferable  form 

y  =  eSx{E  cos  2x  +  F  sin  2x), 

or  again  as  ?/  =  CeZx  cos  (2#  -  a), 

'  where  C  cos  a  =  E  and  C  sin  a  =  F, 
so  that  C  =  J(E2  +  F2)  and  tan  a  =  F/E. 

27.  Peculiarity  of  the  case  of  equal  roots.  When  the  auxiliary 

equation  has  equal  roots  a=/3,  the  solution 

y  =  AeaX+Befix 
reduces  to  y  =  {A  +  B)  eaX. 

Now  A  +  B,  the  sum  of  two  arbitrary  constants,  is  really  only  a 
single  arbitrary  constant.  Thus  the  solution  cannot  be  regarded  as 
the  most  general  one. 

We  shall  prove  later  (Art.  34)  that  the  general  solution  is 

y  =  (A+Bx)eaX. 
28.  Extension  to  orders  higher  than  the  second.  The  methods 

of  Arts.  25  and  26  apply  to  equation  (1)  whatever  the  value  of  n,  as 

long  as/(x)=0. 

The  auxiliary  equation  is 
m3-6m2  +  llm-6  =  0, 

giving  m  =  l,  2,  or  3. 
Thus  y  =  Aex  +  Be2x  +  Ce3x. 

Ex.(ii).  U'8y  =  °' 
The  auxiliary  equation  is  m3  -  8  =  0, 

i.e.     (m-2)(m2  +  2m  +  4)=0, 
giving  m  =  2  or  -l±i\/S. 

Thus  y  =  Ae2x  +  e~x(E  cos  x^/3  +  F  sin  x\/3), 
or  y  =  Ae2x  +  Ce~x  cos  (x\/3- a). 
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Examples  for  solution. 
Solve 

y,.,  d2s     .ds  J         d2s     .  ds    _ 

(7)  «^  +  2&i     &    2y_a 
(8)  What  does  the  solution  to  the  last  example  become  if  the  initial 

conditions  are  fly 
y  =  l,  -p  =  0  when  x  =  0, 

and  if  y  is  to  remain  ̂ finite  when  x=  +  co  ? 
Solve 

<»»3-»3+"»-*-v        t    . 
•(H)  ̂   +  8y=0.  \|  .(12)g-64<,=0. 
,72/3  J/3 

*  (13)  Z-T-g  +#0=0, -given  that  0  =  a  and  tt=0  when  t=0. 

[The  approximate  equation  for  small  oscillations  of  a  simple  pen- 
dulum of  length  I,  starting  from  rest  in  a  position  inclined  at  a  to  the 

vertical.] 

(14)  Find  the  condition  that  trigonometrical  terms  should  appear 
in  the  solution  of  ^2S       fe 

mdT*+kdi+cs=0- [The  equation  of  motion  of  a  particle  of  mass  m,  attracted  to  a 
fixed  point  in  its  line  of  motion  by  a  force  of  c  times  its  di  -ance  from 
that  point,  and  damped  by  a  frictional  resistance  of  k  times  its  velocity. 
The  condition  required  expresses  that  the  motion  should  be  oscillatory. 
e.g.  a  tuning  fork  vibrating  in  air  where  the  elastic  force  tending  to 
restore  it  to  the  equilibrium  position  is  proportional  to  the  displacement 
and  the  resistance  of  the  air  is  proportional  to  the  velocity.] 

(15)  Prove  that  if  k  is  so  small  that  k2/mc  is  negligible,  the  solution 

of  the  equation  of  Ex.  (14)  is  approximately  e~kt/2m  times  what  it  would 
be  if  k  were  zero. 

[This  shows  that  slight  damping  leaves  the  frequency  practically 
unaltered,  but  causes  the  amplitude  of  successive  vibrations  to  diminish 
in  a  geometric  progression.  ] 
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(16)  Solve  L^  +  R^  +  Q-O,  given  that  Q=QQ  and  ̂   =  0  when 
*  =  0,  and  that  CR2<4:L. 

[Q  is  the  charge  at  time  t  on  one  of  the  coatings  of  a  Leyden  jar  of 
capacity  C,  whose  coatings  are  connected  when  t  =  0  by  a  wire  of  resist- 

ance R  and  coefficient  of  self-induction  L.  ] 

29.  The  Complementary  Function  and  the  Particular  Integral.  So 

far  we  have  dealt  only  with  examples  where  the  f(x)  of  equation  (1) 
has  been  equal  to  zero.  We  shall  now  show  the  relation  between 

the  solution  of  the  equation  when  f(x)  is  not  zero  and  the  solution 

of  the  simpler  equation  derived  from  it  by  replacing  f(x)  by  zero. 
To  start  with  a  simple  example,  consider  the  equation 

It  is  obvious  that  y=x  is  one  solution.     Such  a  solution,  con- 
taining no  arbitrary  constants,  is  called  a  Particular  Integral. 

Now  if  we  write  y=x+v,  the  differential  equation  becomes 

0  2g+R(l.+£)+«t,+.>-5+* 

n  d%*    K  dv     _      n 

'  giving  v  =  Ae~2x  +  Be~ix, 

T  so  that  y=x+Ae-2x+Be-*-x. 

The  terms  containing  the  arbitrary  constants  are  called  the 

Complementary  Function. 
This  can  easily  be  generalised. 

If  y  =  u  is  a  particular  integral  of 

dny        {?n_1v                   dy             £.  »  ia. 

*lf+AjSA  +  ~+**£+**-fW   (6) 

so  that  Po^a+Pi^=i  +  -+Pn-i-^.+PnU=f(x),       (7) 

put  y=u  +  v  in  equation  (6)  and  subtract  equation  (7).     This  gives 

dnv         dn~xv  dv  _  /ox 

V°fan+Pl^+---+Pn-llx+PnV=0   (8) 

If  the  solution  of  (8)  be  v  =  F(x),  containing  n  arbitrary  con- 
stants, the  general  solution  of  (6)  is 

y  =  u+F(x), 

and  F(x)  is  called  the  Complementary  Function. 
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Thus  the  general  solution  of  a  linear  differential  equation  with 

constant  coefficients  is  the  sum  of  a  Particular  Integral  and  the  Com- 
plementary Function,  the  latter  being  the  solution  of  the  equation 

obtained  by  substituting  zero  for  the  function  of  x  occurring. 

Examples  for  solution. 

Verify  that  the  given  functions  are  particular  integrals  of  the  follow- 
ing equations,  and  find  the  general  solutions  : 

j  I  *•>  p-4+*>-<"-    
<2> 3  ■•  -  g-i3!+i» 

•  (3)2sin3a;;     j\  +  iy  =  - 10  sin  Sx. 

For  what  values  of  the  constants  are  the  given  functions  particular 
integrals  of  the  following  equations  ?  ^ 

(4)ae»*;     g  +  13^  +  42y»ll2e»      ̂ ,>V'X 
d2s  \j  /  d2v 

-  (5) aeU  >   ij2+9s= QOe~t-  &v  (6) a  sin  px '  ri + y = 12  sin  2cc* 

V-^7)  a  sin  px  +  b  cos  px  ;     -=-|  +  4  j^  +  3y  =  8  cos  x  -  6  sin  x. 

<«>  •'  §+5l+6^12- 
Obtain,  by  trial,  particular  integrals  of  the  following  : 

.(11)  0  +  9y  =  4Osin5*.  <12>  H"8l  +  9!'  =  40sill5a;- 

» <13)  §  +  8!  +  2» 
30.  The  operator  D  and  the  fundamental  laws  of  algebra.  When 

a  particular  integral  is  not  obvious  by  inspection,  it  is  convenient 
to  employ  certain  methods  involving  the  operator  D,  which  stands 

for  -j-.    This  operator  is  also  useful  in  establishing  the  form  of  the 

complementary  function  when  the  auxiliary  equation  has  equal 
roots. 

d2  d3 
D2  will  be  used  for  j-2,  D3  for  -7-3,  and  so  on. 
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The  expression  2  -y-|  +  5  -j-  +  2y  may  then  be  written 

2D*y  +  5Dy+2y, 

or  (2D*+bD  +  2)y. 
We  shall  even  write  this  in  the  factorised  form 

(2D  +  l)(D+2)y, 

factorising  the  expression  in  D  as  if  it  were  an  ordinary  algebraic 
quantity.    Is  this  justifiable  ? 

The  operations  performed  in  ordinary  algebra  are  based  upon 
three  laws : 

I.  The  Distributive  Law 

m(a  +  b)=ma  +  mb ; 
II.  The  Commutative  Law 

ab  =  ba ; 

III.  The  Index  Law  am  .  an=am+n. 
Now  D  satisfies  the  first  and  third  of  these  laws,  for 

D(u+v)=Du+Dv, 
and  Dm  .  Dnu=Dm+n  .  u 

(m  and  n  positive  integers). 

As  for  the  second  law,  D  (cu)  =  c  (Du)  is  true  if  c  is  a  constant, 
but  not  if  c  is  a  variable. 

Also  Dm  (Dnu)  =  Dn  (Dmu) 
(m  and  n  positive  integers). 

Thus  D  satisfies  the  fundamental  laws  of  algebra  except  in  that 
it  is  not  commutative  with  variables.     In  what  follows  we  shall 

write  F(D)  s  p0D»  +PlD^  +  ...  +pn_1D  +pn, 

where  the  p's  are  constants  and  n  is  a  positive  integer.  We  are 
justified  in  factorising  this  or  performing  any  other  operations 
depending  on  the  fundamental  laws  of  algebra.  For  an  example 
of  how  the  commutative  law  for  operators  ceases  to  hold  when 

negative  powers  of  D  occur,  see  Ex.  (iii)  of  Art.  37. 

31.  F(D)eax=eaxF(a).    Since 

Deax  =  aeax, 

D2eax=a2eax,  ' 
and  so  on,  ,^ 

F(D)  eax  =  (p0Dn  +p1Dn~1  +  ...  +pn-xI)  +pn)  eax 

^(p^+p^-1  +  ...  +pn.1a  +pn)  eax =ea*F(a).\ 
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32.  F(D){eaxV}  =eaxF(D  +a)  V,  where  V  is  any  function  of  x.    By 

Leibniz's  theorem  for  the  nth  differential  coefficient  of  a  product, 

D»{eP*V}  =  (Dneax)  V  +  w(D"-1eoa')  {DV) 

+  ln(n-l)(Dn-*eax)(D*V)  +  ...  +  eax(DnV) 
=ane°*Y  +nan-1eazDV  +\n{n  -  l)a»-V*Da7  +  ...  +eaxDnV 

=eax(an+nanr1I>k  +  hn(n  -  l)an~2D2  +  ...+Dn)V 
=  ea*(Z)+a)nF. 

Similarly  Dn~1{eaxV}=eax(D+a)n-1V,  and  so  on. 
Therefore 

F(D){eaxV}  =  (p0D»  +PlD»~l  + ...  +pn.1D  +pn){eaxV} 

=  eax{p0(D+a)n  +p1(D+a)n~1  + ...  +pn-x{D  +a)  +pn}V 
=  e*xF(D  +  a)V. 

33.  F(D2)  cos  ax  =F(  -  a2)  cos  ax.    Since 

D2  cos  ax  =  -a2  cos  ax, 

Dioosax  =  (-  a2)2  cos  ax, 
and  so  on, 

F(D2)  cos  ax  =  (p0D2n  +p1D2n~2  + ...  +pn-1D2  +pn)  cos  ax 

=  {Po(~ a2)n  +Pi(-a2)n~1  +  ...  +pn-i(  -«2)  +Pn}  cos  «# 
—  F(  -a2)  cos  ax. 

Similarly  F (D2)  sinax=F(- a2)  sin  ax. 

34.  Complementary  Function  when  the  auxiliary  equation  has  equal 

roots.  When  the  auxiliary  equation  has  equal  roots  a  and  a,  it 

may  be  written  m2  _  2ma  +  a2  =  0. 

The  original  differential  equation  will  then  be 

i.e.     (D2-2aZ>+a2)*/=0, 

(D-a)2y=0   :...(9) 

We  have  already  found  that  y=AeaX  is  one  solution.     To  find 

a  more  general  one  put  y=e*?V,  where  V  is  a  function  of  x. 
By  Art.  32, 

(D  -a)*{e?*V}  =eaX(D  -a  +a)2V  =  (T?D2V. 

Thus  equation  (9)  becomes D2V=0, 

i.e.     V  =  A+Bx, 

so  that  
y  =  eax(A+Bx). 

m 
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Similarly  the  equation  (D  -  a)py  =  0 

reduces  to  DPV =0, 

giving  V  =  {Ax  +  A&  +  A  &?  +  . . .  +  Ap^'1), 

and  y  =  eaX  (Ax  +  A^c  +  A  zx2  +  . . .  +  Ap^xP^x). 
When  there  are  several  repeated  roots,  as  in 

(D-anD-(3)*(D-yyy=0,   (10) 
we  note  that  as  the  operators  are  commutative  we  may  rewrite  the 
equation  in  the  form 

iD-PnD-yY{{D-aVy}=0, 

which  is  therefore  satisfied  by  any  solution  of  the  simpler  equation 

(D-ayy=o   '.   (ii) 
Similarly  equation  (10)  is  satisfied  by  any  solution  of 

(D-P)*y=0,    (12) 

or  of  (D-y)ry=0   (13) 
The  general  solution  of  (10)  is  the  sum  of  the  general  solutions 

of  (11),  (12),  and  (13),  containing  together  (p+q+r)  arbitrary 
constants. 

Ex.  (i).  Solve  (D*-8D2  +  16)y  =  0,  (p. 
^ i.e.     (Z)2-4)2?/  =  0. 

The  auxiliary  equation  is  (m2-4)2  =  0, 
m  =  2  (twice)     or     -2  (twice). 

Thus  by  the  rule  the  solution  is 

y  =  (A  +  Bx)  e2x  +  (E  +  Fx)  e~2x. 

Ex.  (ii).  Solve  (D2  +  l)2*/  =  0. 

The  auxiliary  equation  is  (m2  +  l)2  =  0, 
m  —  i  (twice)     or     -i  (twice). 

Thus  y  =  {A  +  Bx)eix  +  {E+Fx)e~ix, 
or  better  y  =  (P+  Qx)  cos  x  +  ( R  +  Sx)  sin  x. 

Examples  for  solution. 

\h)  {D*  +  2D*  +  D2)y  =  0.  ><  $)  (-D6  +  3Z>*  +  32)a  +  l)y  =  0. 

^)  (Di-2D3  +  2D2-2D  +  l)y  =  0.   $4)  (4Z>5-3Z>3-  D2)  t/  =  0.       s 
(5)  Show  that 

F  (D2){P  cosh  ax  +  Q  sinh  ax)  =  F(a2)  (P  cosh  ax  +  Q  sinh  ax) . 

(6)  Show  that  (D  - a)4n(eax  sin  px)  =p*neax  sin  px. 

35.  Symbolical  methods  of  finding  the  Particular  Integral  when 

f(x)  =eax.  The  following  methods  are  a  development  of  the  idea 
of  treating  the  operator  D  as  if  it  were  an  ordinary  algebraic  quan- 
p.d.e.  c 
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tity.  We  shall  proceed  tentatively,  at  first  performing  any  opera- 
tions that  seem  plausible,  and  then,  when  a  result  has  been  obtained 

in  this  manner,  verifying  it  by  direct  differentiation.     We  shall  use 

the  notation  Y7Jy\  /(*)  *°  denote  a  particular  integral  of  the  equati 

„   F(D)y-f{z).   
(i)  If  f(x)  =eax,  the  result  of  Art.  31, 

F(D)  e™  =  eaxF  (a) 
1 

" 

suggests  that,  as  long  as  F(a)=j=0,  ̂ y-r  eax  may  be  a  value  of 
F(u)v    — v_—"»   F(Dy 

This  suggestion  is  easily  verified,  for 

W^}-9lSrVyArt.3i. 
>F(a)      J       F{a) 

=  eax. 
(ii)  If  F  (a)  =0,  {D-a)  must  be  a  factor  of  F(D). 

Suppose  that  F(D)=(D -a)p<f>(D),  where  0(a)=/=O. 
Then  the  result  of  Art.  32, 

F  (D)  {eax  V }  =  eax  F  (D  +  a)  V, 
suggests  that  the  following  may  be  true,  if  7  is  1, 

1-^^  1  _,  1        l(*x.l\       e™     1     ,    /jw*~--.    pax   j   y  _      

F(D)  (D-a)P<f>(D)  (D-a)p\</>(a){     <j>(a)  Dp 

e?x  xv 

adopting  the  very  natural  suggestion  that  jz  is  the  operator  inverse 

to  D,  that  is  the  operator  that  integrates  with  respect  to  x,  while 

y-  integrates  p  times.  Again  the  result  obtained  in  this  tentative 

manner  is  easily  verified,  for 

■♦^K^S'  byArt-32' 

=  e?x,        byArt.  31. 
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In  working  numerical  examples  it  will  not  be  necessary  to  repeat 
the  verification  of  our  tentative  methods. 

Ex.  (i).  (D  +  3)2y  =  50e*x. 
The  particular  integral  ia 

(Z>  +  3)2  (2+3) 

Adding  the  complementary  function,  we  get 

y  =  2e2x  +  {A  +  Bx)e~3x. 

Ex.  (ii).  (Z>-2)2i/=.50e2*. 

If  we  substitute  2  for  D  in  jj: — ^  50e2x,  we  get  infinity. 
But  using  the  other  method, 

(D]_2)2  •  50e2*  =  50e2ie  -^-2  . 1  =  5Qe2*  ,  \x2  -  25x2e2*.  \ 

Adding  the  complementary  function,  we  get 

y  =  25x2e2x  +  (A  +  Bx)e2x. 

Examples  for  solution. 
Solve  v? 

m)(D2  +  6D  +  25)y=^lQi:^x.  rfft)  (D2  +  2pD  +  p2  +  q2)y  =  eax. 

:($)  (D2-9)?/  =  54^^  m  (D3-D)y  =  ex  +  e-x. 
(5)  (D2-p2)y  =  a'2o&px.  (6)  (D*  +  iD2  +  lD)  y  =  8e~2x. 

36.  Particular  Integral  when  f  (x)  =cos  ax.    From  Art.  33, 

(j>  (D2)  cos  ax  =  <f>  (  -  a2)  cos  ax. 
This  suggests  that  we  may  obtain  the  particular  integral  by 

writing  -  a2  for  D2  wherever  it  occurs. 

Ex.  (i).  (D2  +  SD  +  2)  y  =  cos  2x. 
1  1  1 

.  COS  2x  =   ;   t-=:   -  .  COS  2x  =  7rF:   rr  .  cos  2x. 
D2  +  3D  +  2  -4  +  3Z)  +  2  3D-2 

To  get  D2  in  the  denominator,  try  the  effect  of  writing 

1      _3Z>  +  2 

3ZT^2~9Z>2-4' 
suggested  by  the  usual  method  of  dealing  with  surds. 

This  gives 

— ^r — i  cos  2x  =  -  xV(3-D  cos  2x  +  2  cos  2x) -  oo  -  4 

=  -tL0.(-6sin2a;  +  2cos2a;) 

^^(Ssu^aj-cc^a;). 
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Ex.  (ii).  (Di  +  6D2  +  nD  +  6)y  =  2ein3x. 

2  sin  3x  =  2  — ^= — — : — r-r^ — -  sin  3x 
D3  +  6D2  +  llD  +  6  -9D-54-     LD  +  6 

1 
Z)-24 
D  +  24 

Z>2-576 

_    i 

sin  3z 

sin  3x 

5  s -(3  cos  3a;  +  24  sin  Sx) 

=  -  T-^T(cos  3x  +  8  sin  3x). 

We  may  now  show,  by  direct  differentiation,  that  the  results 
obtained  are  correct. 

If  this  method  is  applied  to 

[<f>  (D2)  +  D\J,  (D2)  ]  y  =  P  cos  ax  +  Q  sin  ax, 
where  P,  Q  and  a  are  constants,  we  obtain 

<j>  ( -  a2) .  (P  cos  ax  +  Q  sin  ax)+a\p-  {-a2)  .  (P  sin  ax  -Q  cos  ax) 

{^(-a2)}2  +  a2{yjr(-a2)}2. 
It  is  quite  easy  to  show  that  this  is  really  a  particular  integral, 

provided  that  the  denominator  does  not  vanish.  This  exceptional  case 
is  treated  later  (Art.  38). 

Examples  for  solution. 
Solve  / 

.$&  {D  +  l)y  =  10sm2x.  fa  (Z)2-5Z)  +  6)  </  =  100sin  ix. 
^(3)  (Z)2 +  8D  +  25)i/  =  48  cos  a: -16  sin  a. 

v<4)  (D2  +  2D  +  401)  y  =  sin  20z  +  40  cos  20x. 
(5)  Prove  that  the  particular  integral  of 

d2s    _7  ds       „ 
-tt  +  2*  -t;  +  V  s  =  a  cos  at at2         at 

may  be  written  in  the  form     b  cos  (qt  -  e), 

where        b  =  a/{(p2-q2)2  +  ik2q2}h    and    tan  €  =  2kq/(p2-q2). 
Hence  prove  that  if  q  is  a  variable  and  &,  p  and  a  constants,  6  is 

greatest  when  q  =  y/{p2  -  2k2)  =  p  approx.  if  k  is  very  small,  and  then 
e  =  7r/2  approx.  and  b  =  a/2kp  approx. 

[This  differential  equation  refers  to  a  vibrating  system  damped 

by  a  force  proportional  to  the  velocity  and  acted  upon  by  an  external 
periodic  force.  The  particular  integral  gives  the  forced  vibrations 
and  the  complementary  function  the  free  vibrations,  which  are  soon 

damped  out  (see  Ex.  15  following  Art.  28).  The  forced  vibrations 

have  the  greatest  amplitude  if  the  period  2-n-fq  of  the  external  force 
is  very  nearly  equal  to   that  of  the  free  vibrations  (which  is 
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2ir/y/{p2-k2)=2ir/p  approx.),  and  then  e  the  difference  in  phase 
between  the  external  force  and  the  response  is  approx.  tt/2.  This 
is  the  important  phenomenon  of  Resonance,  which  has  important 

applications  to  Acoustics,  Engineering  and  Wireless  Telegraphy.] 

37.  Particular  integral  when  f(x)  =xm  ,  where  m  is  a  positive  integer. 

In  this  case  the  tentative  method  is  to  expand  j^  in  a  series  of 
ascending  powers  of  D. 

Ex.(i).  -^^  =  1.(1+^)-^ 

=  i(*2-i). 
Hence,  adding  the  complementary  function,  the  solution  suggested 

for  {D*+4)y  =  z* 

is  y  =  \(x2-^)+A  cos  2x4-5  sin  2x. 
Ex.  (ii). 

D2-iD  +  S ̂   =  £  \i^d ~ 3TI)) **>    b?  Partial  fractions, 
f  /      D    D2    D3    Z)4        M 

=  i{(l  +  Z)  +  Z)2  +  Z)3  +  Z).4  +  ...)-i(l+-  +  T+-+-+...)}^ 

Adding  the  complementary  function,  the  solution  suggested  for 

(D2-iD  +  3)y  =  x3 

is  y^^xS  +  ̂   +  zg-x  +  ̂   +  Aet  +  Be?*. 

s*  m   dhb^T)96x2=w  ■  Uwrtx°} 
-W.-jTj^-g).    from  Ex.  (i), 

-■i(S-t) 

=  2x4-6x2. 

Hence  the  solution  of  D2(Z)2  +  4)  y  =  96x2  should  be 

y  =  2x*-6x2  +  A  cos  2x  +  Z?sin  2x  +  E  +  Fx. 
Alternative  method. 

=  (24:D-2-6  +  %D2-...)x2 
=  2x*-6x2  +  3. 
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This  gives  an  extra  term  3,  which  is,  however,  included  in  the 
complementary  function. 

*  The  method  adopted  in  Exs.  (i)  and  (ii),  where  F(D)  does  not 
contain  D  as  a  factor,  may  be  justified  as  follows.  Suppose  the  expan- 

sions have  been  obtained  by  ordinary  long  division.  This  is  always 
possible,  although  the  use  of  partial  fractions  may  be  more  convenient 

in  practice.  If  the  division  is  continued  until  the  quotient  contains  Dm, 
the  remainder  will  have  Dm+1  as  a  factor.    Call  it  <p(D) .  Dm+1.    Then 

^=CQ  +  c1D  +  c2D*  +  ...+cmn™  +  *iD]}-]^+1   (1) 
This  is  an  algebraical  identity,  leading  to 

l  =  F(D){c0  +  c1D  +  ctD*  +  ...+cmDm}  +  <f>{D) .  D"*1   (2) 
Now  equation  (2),  which  is  true  when  D  is  an  algebraical  quantity, 

is  of  the  simple  form  depending  only  on  the  elementary  laws  of  algebra, 
which  have  beffc  shown  to  apply  to  the  operator  D,  and  it  does  not 
involve  the  difficulties  which  arise  when  division  by  functions  of  D  is 
concerned.  Therefore  equation  (2)  is  also  true  when  each  side  of  the 

equation  is  regarded  as  an  operator.  Operating  on  xm  we  get,  since 
Dm+1xm  =  0, 

xm=F(D){{c(t  +  c1D  +  c2D2  +  ...+cmDm)xm},      (3) 

which  proves  that  the  expansion  obtained  in  (1),  disregarding  the 

remainder,  supplies  a  particular  integral  of  F(D)y=xm. 
It  is  interesting  to  note  that  this  method  holds  good  even  if  the 

expansion  would  be  divergent  for  algebraical  values  of  D. 
To  verify  the  first  method  in  cases  like  Ex.  (iii),  we  have  to  prove 

that  1 

i.e.    (c0D-r  +  c1D~r+1  +  c2D-r+2  +  ...  +cmD~r+m)  xm, 

is  a  particular  integral  of  {F(D) .  Dr}y  =  xm, 

i.e.  that  {F (D)  .  Dr}  {(cQD-r  +  c^*1  +  c2D~r+2 
+  ...+cmD-r+m)xm}=xm   (4) 

Now  {F(  D)  .  D'}  u  m  F(D) .  {Dru}, 

also  Dr{(c8D  ~  '■+*)  xm}  =  (cgD*)  xm ; 
hence  the  expression  on  the  left-hand  side  of  (4)  becomes 

F(D){(c0  +  c1D  +  c2D*  +  ...+cmD™)xm}  =  x'»,  by  (3), 
which  is  what  was  to  be  proved. 

In  the  alternative  method  we  get  r  extra  terms  in  the  particular 

integral,  say  (Cffi+1Z)^^+...+W2>»)*« 

These  give  terms  involving  the  (r-l)th  and  lower  powers  of  x. 
But  these  all  occur  in  the  complementary  function.  Hence  the  first 
method  is  preferable. 

*  The  rest  of  this  article  should  be  omitted  on  a  first  reading. 
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Note  that  if  D~hi  denotes  the  simplest  form  of  the  integral  of  u, 
without  any  arbitrary  constant, 

D-1(DA)  =  D-1.  0=0, 

while  i>{2H.l)-X>.*-l, 

so  that  D(D-1.l)^D-1.(Z).l). 

Similarly  Dm  (D-m  .  xn)=^D-m(Dm  .  xn),  if  m  is  greater  than  n. 
So  when  negative  powers  of  D  are  concerned,  the  laws  of  algebra 

are  not  always  obeyed.  This  explains  why  the  two  different  methods 
adopted  in  Ex.  (iii)  give  different  results. 

Examples  for  solution. 

Solve 

-j(l)  (D  +  \)y  =  %*.  /(2)  (D2  +  2D)y  =  2ix. 

^(3)  (D2-6D  +  9)y  =  5±x  +  l8.    '  (4)  (D4-6D3  +  952)?/  =  54a:  +  18.    , 

v/(5)  (D2-D-2)y  =  U-76x-±8x2. 

JG)  (IP-D2-2D)y  =  U-76x-±8x2.  U 

38.  Particular  integrals  in  other  simple  cases.  We  shall  now 

give  some  typical  examples  of  the  evaluation  of  particular  integrals 
in  simple  cases  which  have  not  been  dealt  with  in  the  preceding 
articles.  The  work  is  tentative,  as  before.  For  the  sake  of  brevity, 
the  verification  is  omitted,  as  it  is  very  similar  to  the  verifications 

already  given. 

Ex.  (i).  (D2  +  4)y=sm2x. 

We  cannot  evaluate  -^ — j  sin  2x  by  writing   -  22  for  D2,  as  in 

Art.  36,  for  this  gives  zero  in  the  denominator. 

But  i  sin  2x  is  the  imaginary  part  of  e2ix,  and 

eax  =  e2ix  t  if        as  m  Art.  35, 
Z)2  +  4  (Z>  +  2*')2  +  4 

— ■    x       _     JL     

L_.i  ±-S*>   -x.i 
1       I.     Dv* 

ca". 

-'"OT-{(»-B+™--)-U   P) 

"e     4*D  4* 

«■  -  |«x(cos  2a;  + 1  sin  2x) ; 
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hence,  picking  out  the  imaginary  part, 

™ — r  sin  2x  =  -  \x  cos  2x. 

Adding  the  complementary  function,  we  get 

y  =  A  cos  2x  +  B  sin  2x  -  \x  cos  2x. 

Ex.  (ii).  (D2  -  52)  +  6)  y  =  e2xx*. 

(D2-5D  +  6)  \2-D    3-D/        ̂  

=e2x(4-r^)^  * 
=  e2*  (  -  ̂  - 1  -  D  -  D2  -  D3  -  D*  - ...) 

a? 
=  e2*(  -  \x*  -  x3  -  3x2  -  6x  -  6). 

Adding  the  complementary  function,  we  get 

y  =  A<?x  -  e**{\x*  +  x3  +  3x*  +  6x-  B), 
including  the  term  -  6e2x  in  Be2x. 

Ex.  (iii).  (Z)2  -  6D  + 13)  y  =  8<?x  sin  2x. 

.  8<?x  sin  2x  =  8eSx,,„     ..,„      *        -^ — r^  .  sin  2x 
(D2-6D  +  13)"  {(D  +  3)2-6(Z)  +  3)  +  13} 

=  8e3a:-K5 — 7sin2z 

=  8e3a:(  -  \x  cos  2x)        (see  Ex.  (i) ) 
=  -  2xe?x  cos  2x. 

Adding  the  complementary  function,  we  get 

y  =  e?x(A  cos  2x  +  B  sin  2x  -  2x  cos  2x). 

These  methods  are  sufficient  to  evaluate  nearly  all  the  particular 
integrals  that  the  student  is  likely  to  meet.  All  other  cases  may 

be  dealt  with  on  the  lines  indicated  in  (33)  and  (34)  of  the  miscel- 
laneous examples  at  the  end  of  this  chapter. 

Examples  for  solution. 
Solve 

"(1)  (Z)2  +  l)</  =  4cosa;.  (2)  (D-l)  y  =  (x  +  3)  e*x. 
y\Z)  (D!i-3LD-2)y  =  5i0x3e-x.  y(i)  (DM-  2D + 2)  y  » 2e-*«n  x.  f: 

(5)  {D^+}J^ji=2ixcosx.  (6)  (W^~D)y  =  \2ex  +  8  sin  x  -2x. 
(7)  (D2-6D  +  25)y  =  2e3*cos4:r  +  8e3a:(l-2:r)sin4x.  . 

39.  The  Homogeneous  Linear  Equation.  This  is  the  name  given 

to  the  form     {p(fcnBn  +p1xn~1Dn-1  + . . .  +  pn)  y  =f  (x). 
It  reduces  to  the  type  considered  before  if  we  put  x  =  e'. 
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Ex.  (x3D3  +  3x2D2  +  xD)y  =  2ix2. 

Put  x  =  el, dx_  t_ 

dt~6=X> 
t.  _.      d      dt  d     1  d 

so  that     D  =  dZ="d-xjr-Jt' 

\xdt)        x*dt  +  x     dt    x2\    dt^dt2).' 

x2\    dt  +  dt2)        a*\    dt  +  dt2J+x2      \    dt  +  dt2/ 

x*\    dt  +  dt2)+x3\    dt2  +  dt?) 

x*\  dt      dt2    dtV' 
d    u 

thus  the  given  differential  equation  reduces  to  -^  =  2ie2\ 

giving  y  =  A  +  Bt  +  Ct2  +  3eit 

=  A  +  B\ogx  +  C(logx)2  +  3x2. 

Another  method  is  indicated  in  (28)-(30)  of  the  miscellaneous 
examples  at  the  end  of  this  chapter. 

The  equation 

p0(a+bx)nDny  +p1(a  +  bx)n-1Dn~1y  + ...  +pny  =f(x) 
can   be  reduced    to    the   homogeneous   linear    form    by  putting 

z  =  a  +bx,  giving  ^   =dy^dydz=bdy 
y    dx    dz  dx      dz ' 

Examples  for  solution. 

/(I)  x2^-2xd£  +  2y  =  M.         /  (2)  ̂ g  +  9x|  +  25^50. 

(3)  x3^  +  3:K2§  +  a;|  +  8^  =  65c0s(l0^)- 

W  ̂dx*  +  Z^dx*  +  X  dx2    Xdx  +  y~[°gX- 

(5)  (1+2^2-6(1 +2x)g  +  16^r8  (l+2a:)«. 

(6)  (l  +  x)2<^  +  (l+x)d£  +  y==ico8log(l+x). 
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40.  Simultaneous  linear  equations  with  constant  coefficients.  The 

method  will  be  illustrated  by  an  example.  We  have  two  de- 
pendent  variables,   y  and  z,   and   one    independent  variable   x. 

D  stands  for  -»-,  as  before. ax 

Consider  (52)+4)  y -(2D  +  l)z  =  e~x,       (1) 

(D  +  S)y-       3z       =be~x   (2) 
Eliminate  z,  as  in  simultaneous  linear  equations  of  elementary 

algebra.  To  do  this  we  multiply  equation  (1)  by  3  and  operate  on 

-equation  (2)  by  (22) +  1). 
Subtracting  the  results,  we  get 

{3  (52)  +4)  -  (22)  +  1)(D  +  8)}  y  =     Se~x  -  (2D  +  1)  5e~*, 
i.e.    (-2D2-2D  +  ±)y  =     Ser*t 

or  (D2jD-2)y  =  -4<r* 
Solving  this  in  the  usual  way,  we  get 

y  =  2e-x+Aex+Be~2x. 
The  easiest  way  to  get  z  in  this  particular  example  is  to  use 

•equation  (2),  which  does  not  involve  any  differential  coefficients  of  z. 
Substituting  for  y  in  (2),  we  get 

Ue~x  +  9Aex  +  QBe~2x  -  3z  =  5e~*, 

so  that  z  =  36-*  +  3Aex  +  2Be~2x. 

However,  when  the  equations  do  not  permit  of  such  a  simple 
method  of  finding  z,  we  may  eliminate  y. 

In  our  case  this  gives 

{  -  (2)  +8) (2D  +  1)  +  3(52)  +  4)}  y  =  {D  +  S)e~x  -  (52)  +  4)5e"*, 

i.e.    (-22)2-22)  +  4)z  =  12e-*, 

-giving  z  =  3e~x  +  Eex  +  Fe~2x. 
To  find  the  relation  between  the  four  constants  A,  B,  E,  and  F, 

substitute  in  either  of  the  original  equations,  say  (2).    This  gives 

(2)  +  8)  (2e~x  +  Aex  +  Be~2x)  -  3  {3e~x  +  Eex  +  Fe~2x)  =  5e~x, 

i.e.    (9 A  -  ZE)  ex  +  (6#  -  32?)  e~2x  =  0, 
whence  E  =  ?>A    and    F  =  2B, 

so  z  =  Se~x  +  Eex  +  Fe~2x  =  3e~x  +  3^e*  +  2Be~2x,    as  before. 

Examples  for  solution. 

(1)  Dy-z  =  0,  (2)  (Z>- 17)  t/  +  (22)- 8)2  =  0, 
(D-l)y-(D  +  \)z  =  0.  ,  (132)- 53)?/- 22  =  0. 

<3)     (22)2-2)  +  9)y-(Z)2  +  2)  +  3)2  =  0) 
(22)2  +  D  +  7)  y  -{D2-D  +  5)2=0. 
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<4)  (D  +  \)y  =  z  +  ex,  (5)  {D2  +  b)y-d  =  -36cos  7x, 

{D  +  l)z  =  y  +  ex.  p>n)2z  =  99co8  7x. 

(6)  (2.D  +  l)«/  +  (Z>  +  32)z  =  91e-*  +  147sin2a;  +  135cos2a;, 
y-(D-8)z  =  29e~x  +  47  sin  2x  +  23  cos  2x. 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  III. 
Solve 

/O)  (Z)-l)32/  =  16e3*.  (2)  (4D2  +  12Z)  +  9)i/  =  144a*fH 

u  <3)  (D*  +  6IP  +  nD2  +  6D)  y  =  20e~2x  sin  x. 
<4)  (D3-D2  +  4:D-i)y  =  68exam2x. 
(5)  (D*-6D2-8D-S)y  =  256(x  +  l)(?x. 

(6)  (ZH-8Z)2-9)i/  =  50sinh2a;.        (7)  (Z>»-2Z)2  +  1)  */  =  40cosh  x. 

(8)  (Z)-2)22/  =  8(x2  +  e2*  +  sin2x).     (9)  (D-2)2y  =  8x2e2x  Bin  2x. 
<10)  (7)2  +  l)?/  =  3cos2a;  +  2  8in3x. 
<11)  (D*  +  lOD2  +  9)y  =  96am2xcosx. 

(12)  (D-a)ay  =  ax,  where  a  is  a  positive  integer. 

ax2    x  ax         x2  dx2    x  dx 

<15>  %  =  f  ̂   (,  +  l)2g  +  (,  +  l)gH2x  +  3)(2x  +  4). 

§  +  4§  +  4,  =  25*  +  W. 

«**-*    £-*;>*  <l«)£  +  I-0;    <§+*-0. 

(21)  Show  that  the  solution  of  (D2n+1-l)y  =  0  consists  of  Je*  and 
n  pairs  of  terms  of  the  form 

efx  (Br  cos  sx  +  Cr  sin  sx), 
.  2ttt  .  .      2xr 
where  c  =  cos  ̂        and     s  =  sin  -   , 2w  + 1  2n  + 1 

r  taking  the  values  1,  2,  3 ...  n  successively. 

(22)  If  (D-a)u  =  0, 

(D-a)  v  =  u, 
and  (D-  a)y  =  v, 

find  successively  w,  w,  and  y,  and  hence  solve  (D-a)3</  =  0 

/ 
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(23)  Show  that  the  solution  of 

(D-a)(D-a-h)(D-a-2h)y=0 

can  be  written  Aeax  +  B^x- — r— -+Ceax-   ^   '-. 
h  h* 

Hence  deduce  the  solution  of  (D-  a)zy  =  0. 

[This  method  is  due  to  D'Alembert.  The  advanced  student  will 
notice  that  it  is  not  quite  satisfactory  without  further  discussion.  It 
is  obvious  that  the  second  differential  equation  is  the  limit  of  the  first, 
but  it  is  not  obvious  that  the  solution  of  the  second  is  the  limit  of  the 

solution  of  the  first.] 
oz  o  z 

(24)  If  {D-a)3emx  is  denoted  by  z,  prove  that  z,  =— ,  and  =— ^  all 
vanish  when  m  =  a. 

Hence  prove  that  eax,  xe?x,  and  x2eax  are  all  solutions  of  (D -  a)3y =0. 

[Note  that  the  operators  {D-af  and  -~—  are  commutative.] 

.-„,   ..,         ,    ,  cos  ax  -  cos  (a  +  h)  x 
(25    Show  that    ;   ,.2  v    . x  (a  +  h)2-a2 

is  a  solution  of  (D2  +  a2)  y  =  cos  (a  +  h)  x. 

Hence  deduce  the  Particular  Integral  of  (D2  +  a2)y  =  cos  ax. 
[This  is  open  to  the  same  objection  as  Example  23.] 

(26)  Prove  that  if  V  is  a  function  of  x  and  F(D)  has  its  usual 
meaning, 

(i)  Dn[xV]       =xDnV  +  nDn-W\ 

(ii)  F(D)[xV]  =  xF{D)V  +  F'(D)V; 

(iii)^-rsri-s  — 7-  F{D)  v- 
{m}  F(D)[ -      J        F(D)  V     [F(D)]2     ' 

(iv)  <p(D)[xnV]  =  xntp{D)V  +  nxn-1</>'(D)V  +  ---  +nC,.xn-r<f>r(D)V 

where  <p{D)  stands  for  • 

(27)  Obtain  the  Particular  Integrals  of  (i)  (D-  l)y  =  xe2x, 

(ii)  (D  +  l)y  =  x2  coax, 
by  using  the  results  (iii)  and  (iv)  of  the  last  example. 

(28)  Prove,  by  induction  or  otherwise,  that  if  6  stands  for  x 3-, 

x»^=e(d-l)(0-2)...(0-n  +  l)y. 
(29)  Prove  that 

(i)  F(6)xm        =  xmF{m); 

xm 

(u)  jrgf    ~r$sj-  provided  F(m)±°'- 

(iii»  m[xmV]=^-FW^)v- 
where  V  is  a  function  of  x. 
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(30)  By  using  the  results  of  the  last  question,  prove  that  the  solu- 

tion of  d2  d  ..-,-.         „  „ 
x2j\-ix~+%y  =  x5  is  $x5  +  Axa  +  Bxb, 

-where  a  and  b  are  the  roots  of  m{m -  1)  -  4m  +  6  =  0, 
i.e.     2  and  3. 

(31)  Given  that  (D-l)y  =  e2x, 

prove  that  (D-l)(D-2)y  =  0. 
By  writing  down  the  general  solution  of  the  second  differential 

equation  (involving  two  unknown  constants)  and  substituting  in  the 
first,  obtain  the  value  of  one  of  these  constants,  hence  obtaining  the 
solution  of  the  first  equation. d2y 

(32)  Solve  j^2+p2y  =  sin  ax  by  the  method  of  the  last  question. 

(33)  If  ux  denotes  eax  I  ue~ax  dx, 

u2  denotes  ebx  I  u^er**  dx, 
etc., 

prove  the  solution  of    F(D)y  =  u,  where  F(D)  is  the  product  of  n 
factors. 

(D-a)(D-b)... 

may  be  written  y  =  un- 

This  is  true  even  if  the  factors  of  F(D)  are  not  all  different. 

Hence  solve  (D-a)(D-b)y  =  eaxlog  x. 

(34)  By  putting  „  ~  into  partial  fractions,  prove  the  solution  of 

F(D)y  =  u  may  be  expressed  in  the  form 

2-^rrreaa;l  ue~axdx, F'{a)      J 

provided  the  factors  of  F(D)  are  all  different. 

[If  the  factors  of  F(D)  are  not  all  different,  we  get  repeated  inte- 
grations.] 

Theoretically  the  methods  of  this  example  and  the  last  enable  us  to 
solve  any  linear  equation  with  constant  coefficients.  Unfortunately, 
unless  u  is  one  of  the  simple  functions  (products  of  exponentials,  sines 
and  cosines,  and  polynomials)  discussed  in  the  text,  we  are  generally 
left  with  an  indefinite  integration  which  cannot  be  performed. 

If  u  =f(x),  we  can  rewrite  eax  I  ue~ax  dx 

in  the  form  f(t)ea^-^dt, 

where  the  lower  limit  Jc  is  an  arbitrary  constant. 
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(35)  (i)  Verify  that 

1  f * 

y  =  ~\  f(t)ai
np(x-t

)dt 

is  a  Particular  Integral  of 

[Remember  that  if  a  and  b  are  functions  of  x, 

(ii)  Obtain  this  Particular  Integral  by  using  the  result  of  the  last 
example. 

(iii)  Hence  solve  (Z)2  +  l)i/  =  cosec  x. 

(iv)  Show  that  this  method  will  also  give  the  solution  of 

(in  a  form  free  from  signs  of  integration),  if  f(x)  is  any  one  of  the  func- 
tions tan  x,  cot  x,  sec  x). 

(36)  Show  that  the  Particular  Integral  of  j~  +  p2y  =  k  cos  pt  repre- 

sents an  oscillation  with  an  indefinitely  increasing  amplitude. 
[This  is  the  phenomenon  of  Resonance,  which  we  have  mentioned 

before  (see  Ex.  5  following  Art.  36).  Of  course  the  physical  equatic 

of  this  type  are  only  approximate,  so  it  must  not  be  assumed  thatjpie 
oscillation  really  becomes  infinite.  Still  it  may  become  too^pge 
for  safety.  It  is  for  this  reason  that  soldiers  break  step  on  c^£hg  a 
bridge,  in  case  their  steps  might  be  in  tune  with  the  natural  osOTlation 
of  the  structure.  ] 

(37)  Show  that  the  Particular  Integral  of 

-^  +  2h-^  +  (h2  +  p2)y  =  Jce-htcospi 
k 

represents  an  oscillation  with  a  variable  amplitude  —te~ht. 

Find  the  maximum  value  of  this  amplitude,  and  show  that  it  is  very 
large  if  h  is  very  small.  What  is  the  value  of  the  amplitude  after  an 
infinite  time  ? 

[This  represents  the  forced  vibration  of  a  system  which  is  in  reson- 
ance with  the  forcing  agency,  when  both  are  damped  by  friction.  The 

result  shows  that  if  this  friction  is  small  the  forced  vibrations  soon 

become  large,  though  not  infinite  as  in  the  last  example.  This  is  an 
advantage  in  some  cases.  If  the  receiving  instruments  of  wireless 
telegraphy  were  not  in  resonance  with  the  Hertzian  waves,  the  effects 
would  be  too  faint  to  be  detected.] 
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(38)  Solve  ^~n*y=0- 

[This  equation  gives  the  lateral  displacement  y  of  any  portion  of  a 
thin  vertical  shaft  in  rapid  rotation,  x  being  the  vertical  height  of  the 
portion  considered.  ] 

(39)  If,  in  the  last  example, 

-i  =  y=0    when    x=0    and    x  =  l, 

prove  that      y  =  E(coa  nx  -  cosh  nx)  +  F(ain  nx  -  sinh  nx) 
and  cos  nl  cosh  nl  =  1 . 

[This  means  that  the  shaft  is  supported  at  two  points,  one  a  height 
I  above  the  other,  and  is  compelled  to  be  vertical  at  these  points.  The 
last  equation  gives  n  when  I  is  known.] 

(40)  Prove  that  the  Complementary  Function  of 

becomes  negligible  when  t  increases  sufficiently,  while  that  of 

dzy    d2y    _ 

oscillates  with  indefinitely  increasing  amplitude. 
[An  equation  of  this  type  holds  approximately  for  the  angular 

velocity  of  the  governor  of  a  steam  turbine.  The  first  equation  corre- 
sponds to  a  stable  motion  of  revolution,  the  second  to  unstable  motion 

or  "  hdyting."    See  the  Appendix  to  Perry's  Steam  Engine.  ] 
(41)  fSgove  that  the  general  solution  of  the  simultaneous  equations  : 

md£=Ve-HedJ, dt2  dt 

m dt*~Me dt' 

where  m,  V,  H,  and  e  are  constants,  is 

x  =  A  +  B  cos  {at  -  a), 
V 

y  =  ■=  t  +  C  +  B  sin  ( cot  -  a), 

He 

where  w  =  —  and  A,  B,  C,  a  are  arbitrary  constants. 

Given  that  —  =  -^  =  x  =  y=0  when  t  =  0,  show  that  these  reduce  to 

x=— -(1  -COS  tot), 
ton. 
V  . 

y=  —jj  (cot  -  sin  tot),  the  equations  of  a  cycloid. 
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[These  equations  give  the  path  of  a  corpuscle  of  mass  m  and  charge 

e  repelled  from  a  negatively-charged  sheet  of  zinc  illuminated  with 
ultra-violet  light,  under  a  magnetic  field  H  parallel  to  the  surface.  V  is 
the  electric  intensity  due  to  the  charged  surface.  By  finding  ex- 

perimentally the  greatest  value  of  x,  Sir  J.  J.  Thomson  determined 
IV  m 
— =,  from  which  the  important  ratio  —  is  calculated  when  V  and  H  are <*>H  e 

known.     See  Phil.  Mag.  Vol.  48,  p.  547,  1899.] 

(42)  Given  the  simultaneous  equations, 

-    (1*1 1       ..dH*      Ix       „ 

.    (1*1 '         ̂ (Z2/,       I2 

where  Lv  L2,  M,  cv  c2,  E  and  p  are  constants,  prove  that  Ix  is  of  the 

form  ax  cos  pt  +  Ax  cos  (mt -a)  +  B1  cos  (nt  -  /3), 
and  1 2  of  the  form 

a2  cos  pt  +  A2  cos  (mt  -a)  +  B2  cos  (nt  -  /3), 
E 

where  ai  =  TFa(l  -P2c2L2)> EM   3 

<X2—     ,      p  C]C2, 

k  denoting  the  expression 

(LXL2  -  M2)  cxc2^  -  (LlCl  +  L2c2)p2  + 1  ; 

m  and  n  are  certain  definite  constants  ;  A1}  Bv  a  and  /3  are  arbitrary 
constants  ;  and  A2  is  expressible  in  terms  of  Ax  and  B2  in  terms 
of  A2. 

Prove  further  that  m  and  n  are  real  if  Lv  L2,  M,  cv  and  c2  are  real 
and  positive. 

[These  equations  give  the  primary  and  secondary  currents  Ix  and 
72  in  a  transformer  when  the  circuits  contain  condensers  of  capacities 

Cj  and  c2.  Lx  and  L2  are  the  coefficients  of  self-induction  and  M  that 
of  mutual  induction.  The  resistances  (which  are  usually  very  small) 

have  been  neglected.     E  sin  pt  is  the  impressed  E.M.F.  of  the  primary.] 



CHAPTER   IV 

SIMPLE  PARTIAL  DIFFERENTIAL   EQUATIONS 

41.  In  this  chapter  we  shall  consider  some  of  the  ways  in  which 

partial  differential  equations  arise,  the  construction  of  simple  par- 
ticular solutions,  and  the  formation  of  more  complex  solutions  from 

infinite  series  of  the  particular  solutions.  We  shall  also  explain  the 

application  of  Fourier's  Series,  by  which  we  can  make  these  complex 
solutions  satisfy  given  conditions. 

The  equations  considered  include  those  that  occur  in  problems 
on  the  conduction  of  heat,  the  vibrations  of  strings,  electrostatics 

and  gravitation,  telephones,  electro-magnetic  waves,  and  the 
diffusion  of  solvents. 

The  methods  of  this  chapter  are  chiefly  due  to  Euler,  D'Alembert, 
and  Lagrange.* 

42.  Elimination  of  arbitrary  functions.  In  Chapter  I.  we  showed 

how  to  form  ordinary  differential  equations  by  the  elimination  of 
arbitrary  constants.  Partial  differential  equations  can  often  be 
formed  by  the  elimination  of  arbitrary  functions. 

Ex.  (i).  Eliminate  the  arbitrary  functions /and  F  from 

y=f(x-«l)  +  F(x  +  at)   (!) 

We  get  ^  =f\x  -  at)  +  F'(x  +  at)  • 

and  <^=f"(x-al)  +  F"(x  +  at)   (2) 

Similarly  -~  —  -  af'(x  -  at)  +  aF'(x  +  at) 

and  yi  =  a2f"{x-at)+a2F"(x  +  at)   (3) 

*  Joseph  Louis  Lagrange  of  Turin  (1730-1813),  the  greatest  mathematician  of 
the  eighteenth  century,  contributed  largely  to  every  branch  of  Mathematics.  He 

created  the  Calculus  of  Variations  and  much  of"  the  subject  of  Partial  Differential 
Equations,  and  he  greatly  developed  Theoretical  Mechanics  and  Inlinitesimal 
Calculus. 
p.d.b.  49  u 

C*o 
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From  (2)  and  (3),  g  =  I  g   :   (4) 

a  partial  differential  equation  of  the  second  order.* 

Ex.  (ii).  Eliminate  the  arbitrary  function  /  from 

■-/©■ 

dz       dz     n 
so  sc^+w^  =0. dx    *  By 

Examples  for  solution. 

/  Eliminate  the  arbitrary  functions  from  the  following  equations  : 

y  (1)  z=f(x  +  ay).  /(2)  z=f(x  +  iy)  +  F(x-iy),wheTei*=-l. 
v/  (3)  z  =f  (x  cos  a  +  y  sin  a  -  at)  +  F(x  cos  a  +  y  sin  a  +  at). 

/(4)  z=f(x2-y2).         v    (5)  z  =  eax+bvf(ax-by). 

-  (6)  -*/©• 
43.  Elimination  of  arbitrary  constants.  We  have  seen  in 

Chapter  I.  how  to  eliminate  arbitrary  constants  by  ordinary 
differential  equations.     This  can  also  be  effected  by  partials. 

Ex.  (i).     Eliminate  A  and  p  from  z  =  Aept  sin  px. 

d2z —  =  -  p2Aept  sin  px, 

d2z 2  =     p2Aept  sin  px  ; 
d! 

dx2+dt2 
Eliminate  a,  b,  and  c  from 

z  =  a(x  +  y)  +  b(x-y)  +abt  +  c. 

dz We  get  =-=a  +  b, 
dz         7 —  =a-b, 

ay 

dz      , 
=-=00. 

dt 

*  Tin's  equation  holds  for  the  transverse  vibrations  of  a  stretched  string. 
The  most  general  solution  of  it  is  equation  (1),  which  represents  two  waves 
travelling  with  spied  a,  one  to  the  right  and  the  other  to  the  left. 
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But  (a  +  o)2-(a-&)2  =  4a&. 

(!)'-(!)'-£• Examples  for  solution. 

Eliminate  the  arbitrary  constants  from  the  following  equations  : 

<i(l)  z= Ae-P2t  cos  px.    */(2)  z  =  Ae-?1  cos  qx  sin  ry,  where  p2  =  q2  +  rl. 
y/{Z)  z  =  ax  +  (\-a)y  +  b.  (4)  z  =  ax  +  by  +  a2  +  b2. 

'(5)  2  =  (x-a)2  +  (t/-6)2.  (6)  az  +  b  =  a2x  +  y. 

44.  Special  difficulties  of  partial  differential  equations.  As  we  have 

already  stated  in  Chapter  I.,  every  ordinary  differential  equation 

of  the  nth  order  may  be  regarded  as  derived  from  a  solution  con- 

taining n  arbitrary  constants*  It  might  be  supposed  that  every 

partial  differential  equation  of  the  nth  order  was  similarly  derivable 
from  a  solution  containing  n  arbitrary  functions.  However,  this  is 
not  true.  In  general  it  is  impossible  to  express  the  eliminant  of 

n  arbitrary  functions  as  a  partial  differential  equation  of  order  n. 
An  equation  of  a  higher  order  is  required,  and  the  result  is  not 

unique."!* 
In  this  chapter  we  shall  content  ourselves  with  finding  particular 

solutions.  By  means  of  these  we  can  solve  such  problems  as  most 
commonly  arise  from  physical  considerations.  J  We  may  console 
ourselves  for  our  inability  to  find  the  most  general  solutions  by  the 
reflection  that  in  those  cases  when  they  have  been  found  it  is  often 

extremely  difficult  to  apply  them  to  any  particular  problem.  § 

♦It  will  be  shown  later  (Chap.  VI.)  that  in  certain  exceptional  cases  an 
ordinary  differential  equation  admits  of  Singular  Solutions  in  addition  to  the 
solution  with  arbitrary  constants.  These  Singular  Solutions  are  not  derivable 
from  the  ordinary  solution  by  giving  the  constants  particular  values,  but  are  of 
quite  a  different  form. 

tSee  Edwards'  Differential  Calculus,  Arts.  512  and  513,  or  Williamson's 
Differential  Calculus,  Art.  317. 

X  The  physicist  will  take  it  as  obvious  that  every  such  problem  has  a  solution, 
and  moreover  that  this  solution  is  unique.  From  the  point  of  view  of  pure 
mathematics,  it  is  a  matter  of  great  difficulty  to  prove  the  first  of  these  facts : 
this  proof  has  only  been  given  quite  recently  by  the  aid  of  the  Theory  of  Integral 

Equations  (see  Heywood  and  Frechet's  L' Equation  de  Fredholm  et  ses  application.? 
a  la  Physique  Math6matique).  The  second  fact  is  easily  proved  by  the  aid  of 

Green's  Theorem  (see  Carslaw's  Fourier's  Series  and  Integrals,  p.  206). 
§For  example,  Whittaker  has  proved  that  the  most  general  solution  of 

Laplace's  equation  twit    t&v    7VV 

3a;2     dy2      3z2  ~ 
V=  I    f(x  cos  t  +  y  sin  t  +  iz,  t)  dt, 

but  if  we  wish  to  find  a  solution  satisfying  certain  given  conditions  on  a  given 
surface,  we  generally  use  a  solution  in  the  form  of  an  infinite  series. 
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45.  Simple  particular  solutions. 
d2z  1  dz 

Ex.  (i).  Consider  the  equation  ,-2  =  -2r  (which  gives  the  con- 

duction" of  heat  in  one  dimension).  This  equation  is  linear.  Now,  in 
the  treatment  of  ordinary  linear  equations  we  found  exponentials  very 

useful.  This  suggests  z  =  e"u:+nt  as  a  trial  solution.  Substituting  in 
the  differential  equation,  we  get 

a2  * 
which  is  true  if  n  =  m2a2. 

ThUs  e""'+"l2a2<  is  a  solution. 

Changing  the  sign  of  m,  e'mx+nfiaH  is  also  a  solution. 

Ex.  (ii).  Find  a  solution  of  the  same  equation  that  vanishes  when 
t=  +oo  . 

In  the  previous  solutions  t  occurs  in  ew2a2t.  This  increases  with  t, 
since  m2a2  is  positive  if  m  and  a  are  real.  To  make  it  decrease,  put 

m  =  ip,  so  that  m2a2  =  - p2a2. 

This  gives  eipx~p2aH  as  a  solution. 
Similarly  e-^-^"2'  is  a  solution. 

Hence,  as  the  differential  equation  is  linear,  e~p2a2t(Aeipx  +  Be~ipx)  is 
a  solution,  which  we  replace,  as  usual,  by 

e~p'kl\E  cos  px  +  F  sin  px). 

d2z     d2z 
Ex.  (iii).  Find  a  solution  of  ̂ -^  +  ̂ ~^=^  which  shall  vanish  when 

y  =  +  oo  ,  and  also  when  x  =  0.  ^ 
Putting  z  =  emx+ny,  we  get  (m2  +  n2)emx+nv  =  0,  so  m2  +  n2=0. 
The  condition  when  y  =  +  oo  demands  that  n  should  be  real  and 

negative,  say  n=  -p. 
Then  m  =  ±  ip. 

Hence  e~vy{Aeipx  +  Be~ipx)  is  a  solution, 

i.e.     e~vi'(E  cos  px.-\-  F  sm  px)  is  a  solution. 

But  z  =  0  if  x  =  0,    so  E  =  0. 

The  solution  required  is  therefore  Fe~P!/sin  px. 

Examples  for  solution. 

O^U      u   it 

(1)  ~-|  =  =-£-,  given  that  y  =  0  when  x  =  +  oo  and  also  when  t  =  +  oo  . 

d2z      1  92z 
(2)  — -  =-x  =-j,  given  that  z  is  never  infinite  (for  any  real  values  of 
v      ox2    a2  oy2 

x  or  y),  and  that  2=0  when  x  =  0  or  y  =  0. 

(3)   \-a  „-=0,  given  that  z  is  never  infinite,  and  that  =-  =0  when 
K  '  dx       dy        s  ox 

■x=*y=>(X 
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d2V    d2V    d2V 
(4)  5  ,2 +2_2  +  "^T=:^'    giyen    that    V=0    when    z=+oo,   when 

y  =  -  oo  ,  and  also  when  2  =  0. 

(5)  p-g  =  -    -  ,  given  that  V  is  never  infinite,  and  that  V  =  C  and 
dV    dV    dV    .     , 
x— •»-=-= -5-=  0  when  x  =  y  =  z=0. ox      ay     oz 

d2V    d2V    dV 
(6)  -2^"  +  "2~i=  ar>  given  that  V  =0  when  £  =  +  oo  ,  when  x=0  or 

I,  and  when  ?/  =  0  or  I. 

46.  More  complicated  initial  and  boundary  conditions.*  In  Ex.  (iii) 

of  Art.  45,  we  found  Fe~py  sin  fx  as  a  solution  of 

dx2+dy2~   ' satisfying  the  conditions  that  z=0  if  y=  +  oo  or  if  £=0. 

Suppose  that  we  impose  two  extra  conditions,"}-  say  2=0  if  x  =  l 
and  2  =  Ix  -  x2  if  «/  =0  for  all  values  of  x  between  0  and  I. 

The  first  condition  gives  sin  pi  =0, 

i.e.    pi  =  nw,  where  n  is  any  integer. 

For  simplicity  we  will  at  first  take  I  =  w,  giving  p  =  n,  any  integer. 

The  second  condition  gives  F  sin  px  =  irx-  x2  for  all  values  of  x 
between  0  and  ir.     This  is  impossible. 

However,  instead  of  the  solution  consisting  of  a  single  term,  we 
may  take 

Fxe~y  sin  x  +  F2e~2y  sin  2x  +  F3e-3y  sin  3x  + . . .  , 
since  the  equation  is  linear  (if  this  is  not  clear,  cf.  Chap.  TIL  Art.  25), 

giving  p  the  values  1,  2,  3.  ...  and  adding  the  results. 

By  putting  y  =  0  and  equating  to  irx  -  x2  we  get 
FA  sin  x  +  F2  sin  2x  +  F3  sin  3x  + . . . 

=  ttx-x2  for  all  values  of  &  between  0  and  tr. 

The  student  will  possibly  think  this  equation  as  impossible  to 
satisfy  as  the  other,  but  it  is  a  remarkable  fact  that  we  can  choose 

values  of  the  F's  that  make  this  true. 
This  is  a  particular  case  of  a  more  general  theorem,  which  we 

now  enunciate. 

*  As  t  usually  denotes  time  and  x  and  y  rectangular  coordinates,  a  condition 
such  as  z  =  0  when  t  =  0  is  called  an  initial  condition,  while  one  such  as  z  =  0  if 
a;  =  0,  or  if  x  =  l,  or  if  y  =  x,  is  called  a  boundary  condition. 

fThis  is  the  problem  of  finding  the  steady  distribution  of  temperature  in  a 
semi-infinite  rectangular  strip  of  metal  of  breadth  I,  when  the  infinite  sides  are 

kept  at  0°  and  the  base  at  (Ix  -  x2)°. 
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47.  Fourier's  Half-Range  Series.  Every  function  of  x  which 
satisfies  certain  conditions  can  be  expanded  in  a  convergent  series 
of  the  form 

/  (x)  =  a1  sin  x  +  a2  sin  2x  +  a3  sin  3x  + . . .  to  inf. 

for  all  values  of  x  between  0  and  -k  (but  not  necessarily  for  the 
extreme  values  x=0  and  x  =  ir). 

This  is  called  Fourier's  *  half-range  sine  series. 
The  conditions  alluded  to  are  satisfied  in  practically  every 

physical  problem."]" 
Similarly,  under  the  same  conditions  f(x)  may  be  expanded  in 

a  half-range  cosine  series 

l0  +  Zx  cos  x  + 12  cos  2x  + 13  cos  3x  + . . .  to  inf. 

These  are  called  half-range  series  as  against  the  series  valid 
between  0  and  2ir,  which  contains  both  sine  and  cosine  terms. 

The  proofs  of  these  theorems  are  very  long  and  difficult.  J  How- 
ever, if  it  be  assumed  that  these  expansions  are  possible,  it  is  easy  to 

find  the  values  of  the  coefficients. 

Multiply  the  sine  series  by  sin  nx,  and  integrate  term  by  term,  § 

giving 

pir  PIT  rn 

I  f(x)smnxdx  =  a1\   sin  x  sin  nx dx  +  a2  1   sin  2x  sin  nxdx  +  ...  . 
Jo  Jo  Jo 

The  term  with  an  as  a  factor  is 

sin2  nx  dx an  I   si] 

Jo 
a  r        1     •  ~\n (1  -cos  2nx)dx  =  ~  x  -  „    sin  2 nx\ 2  L       2/i  Jo 

2  Jo 

=  ̂ an7r. 

*  Jean  Baptiste  Joseph  Fourier  of  Auxerre  (1768-1830)  is  best  known  as  the 
author  of  La  Th4orie  analytique  de  la  chaleur.  His  series  arose  in  the  solution  of 
problems  on  the  conduction  of  heat. 

f  It  is  sufficient  forf(x)  to  be  single-valued,  finite,  and  continuous,  and  have 
only  a  limited  number  of  maxima  and  minima  between  sc  =  0  and  x  =  w.  However, 
these  conditions  are  not  necessary.  The  necessary  and  sufficient  set  of  conditions 
has  not  yet  been  discovered. 

X  For  a  full  discussion  of  Fourier's  Series,  see  Carslaw's  Fourier's  Series  and 
Integrals  and  Hobson's  Theory  of  Functions. 

§  The  assumption  that  this  is  legitimate  is  another  point  that  requires 
justification. 



PARTIAL  DIFFERENTIAL  EQUATIONS  65 

The  term  involving  any  other  coefficient,  say  ar,  is 

ar     sin  rx  sin  nx  dx 

=  -~\   {cos  (n  -  r)x- cos  (n+r)x}dx 

^arrsia(n-r)x    sin  (n+r)x~y 
2l      n-r  n  +  r      J0=   ' 

So  all  the  terms  on  the  right  vanish  except  one. 

Thus  I  f(x)  sin  nx  dx  =  \anir, 

2  f  /., 
01  an  =  -  \  f(%)  sin  nx  dx. 

Similarly,  it  is  easy  to  prove  that  if 

f(x)  =b0  +  b1  cos  x  +  62  cos  2o3  + . . . 

for  values  of  a;  between  0  and  tt,  then 1  r 
ttJo 

and  bn  =        /(«)  cos  wee  (Zx 

for  values  of  n  other  than  0. 

48.  Examples  of  Fourier's  Series. 

(i)  Expand  ttx-x2  in  a  half-range  sine  series,  valid  between  x  =  0 
and  x  =  7r. 

It  is  better  not  to  quote  the  formula  established  in  the  last  article. 

Let  7rx  -  x2  =  a1  sin  x  +  a2  sin  2x  +  a3  sin  3x  + . . .  . 
Multiply  by  sin  nx  and  integrate  from  0  to  tt,  giving 

I    (7rx -  x2)  sin  nx  dx  =  an\   sin2  nxdx  =  ~  an,  as  before. 

Now,  integrating  by  parts, 

I   (irx-x2)  sin  nxdx  =  \  — {ttx  -  x2)  cos  nx\  +-     (tt  -  2x)  cos  nx  dx 
Jo  L     n  J0    wj0v 

=  0  +    — =  (x  -  2x)  sin  wz     +  — ~\    sin  wa;  tZir 
U2  Jo     ™2Jo 
2  r         t    4  . 

=  0  — 5   cos  nx     =  —  if  n  is  odd  or  0  if  «  is  even. 
w  L         Jo    n 

o 

Thus  an= — g  if  w  is  odd  or  0  if  w  is  even,  giving  finally 

ttx  -  x2  =  -  (sin  cc  +  -gV  sin  3x  +  T I T  sin  5x  + . . . ). 7T 
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(ii)  Expand /(as)  in  a  half-range  series  valid  from  x =0  to  x  =  ir,  where 

f{x)  —  mx  between  x  —  0  and  x  =  — Z 

and  f(x)  =  m{7r-x)  between  x  =  —  and  sc  =  7r. 

In  this  case  f(x)  is  given  by  different  analytical  expressions  in 

different  parts  of  the  range.*  The  only  novelty  lies  in  the  evaluation 
of  the  integrals. 

In  this  case 

1  f(x)  sin  nx  dx=  I    f(x)  sin  nx  dx+\   f(x)  sin  wx  cZx 
Jo  Jo  J| 

7T 

=  I    mx  sin  nx  dx  +  I    m(7r  -  x)  sin  wx  dx. 
Jo  J| 

We  leave  the  rest  of  the  work  to  the  student.     The  result  is 
d-fyy 

—  (sin  z-^sin  Sx  +  ̂r  sin  So;-^8*11  7as  +  ...). 

The  student  should  draw  the  graph  of  the  given  function,  and 
compare  it  with  the  graph  of  the  first  term  and  of  the  sum  of  the  first 
two  terms  of  this  expansion. f 

Examples  for  solution. 

Expand  the  following  functions  in  half -range  sine  series,  valid 
between  x  =  0  and  x  =  tt  : 

(1)  1.  (2)  x.  (3)  Xs.  (4)  cos  a.  (5)  ex. 

(6)  f(x)=0  from  x=0  to  x  =—,  and  from  x=—  to  tt, 

f(x)  =  (4:X-7r)(37r-4:x)  from  x  =  —  to  x=-r-. 

(7)  Which  of  these  expansions  hold  good  (a)  for  x  —  0  ? 

(6)  for  x  —  7t  ? 

49.  Application  of  Fourier's  series  to  satisfy  boundary  conditions. 
We  can  now  complete  the  solution  of  the  problem  of  Art.  46. 

We  found  in  Art.  46  that 

Fxe-v  sin  x+F2e~2"  sin  2x  +_F3e~3"  sin  3a;  + ... 
satisfied  all  the  conditions,  if 

Fx  sin  x  +  F2  sin  2x  +  F3  sin  Sx  + . . .  =  irx  -  x2 
for  all  values  of  x  between  0  and  7r. 

*  Fourier's  theorem  applies  even  if  f(x)  is  given  by  a  graph  with  no  analytical 
expression  at  all,  if  the  conditions  given  in  the  footnote  to  Art.  47  are  satisfied. 

For  a  function  given  graphically,  these  integrals  are  determined  by  arith- 
metical approximation  or  by  an  instrument  known  as  a  Harmonic  Analyser. 

t  Several  of  the  graphs  will  be  found  in  Carslaw's  Fonrur's  Series  mid  Inter/rah, 
Art.  59.     More  elaborate  ones  are  given  in  the  Phil.  May.,  Vol.  45  (1898). 
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In  Ex.  (i)  of  Art.  48  we  found  that,  between  0  and  -k, 
o 

r-  (sin  x  +  -jV  sm  3a;  +  y^T  sin  5a;  +  ...)  =  ttx  -  a;2. 7T 

Thus  the  solution  required  is 

-  {e~'J  sin  a;  +  ̂Te~Z!l  sin  3a;  +  1-J--5 e~5j/  sin  5a;  + . . .). 7T 

50.  In  the  case  when  the  boundary  condition  involved  I  instead 

of  ir,  we  found  Fe~vy  sin  jpx  as  a  solution  of  the  differential  equation, 
and  the  conditions  showed  that  p,  instead  of  being  a  positive  integer 
n,  must  be  of  the  form  mr/l. 

Thus  F^e-^'  sin  ttx/1  +  F2e~in^1  sin  2 irx/l  + . . . 
satisfies  all  the  conditions  if 

Ft  sin  7rx{l  +  F2  sin  Sirx/l  +  ...=lx-x2 
for  all  values  of  x  between  0  and  I. 

I2  I2 
Put  ttx/1  =  z.     Then  Ix  -x2  =  — -A-kz-z2).     The  F's  are  thus  -= 7T  7T 

times  as  much  as  before.     The  solution  is  therefore 

8l2 " -3  (e_Tr?//'  sin  7ra;/^  +  irre~'inv"  sm  STrai/Z  +  xi^6"5^' sin  57r:r/^  +  •••)• 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  IV. 

1     -Jt 
(1)  Verify  that  V  =  — re   4^<  is  a  solution  of 

32V_1  dV 

Bx2  ~  K  dt  ' 
(2)  Eliminate  A  and  p  from  V =Ae~px  sin  (2p2Kt-px). 

dV        d2V 
(3)  Transform  -^-  =  K  ̂   -  hV 

3W     „d2W 
t0  .  -U=K~W 

by  putting  V  =  e-htW. 
[The  first  equation  gives  the  temperature  of  a  conducting  rod  whose 

surface  is  allowed  to  radiate  heat  into  air  at  temperature  zero.  The 
given  transformation  reduces  the  problem  to  one  without  radiation.] 

(4)  Transform 

dV_Klf2dV\  dW        d2W 
dt~r2dr\    dr)  dt  dr2 

by  putting  W  =  rV. 
[The  first  equation  gives  the  temperature  of  a  sphere,  when  heat 

flows  radially.] 
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(5)  Eliminate  the  arbitrary  functions  from 

vJ-[f(r-at)  +  F(r  +  at)]. 

(6)  (i)  Show  that  if  emx+int  is  a  solution  of 

dV        d2V 

where  n  and  h  are  real,  then  m  must  be  complex. 

(ii)  Hence,  putting  m=-g-if,  show  that  V0e-ffx  sin  (nt -fx)  is  a 
solution  that  reduces  to  F0sin  nt  for  x  =  0,  provided  K(g2-f2)=h  and 
n  =  2Kfg. 

(iii)  If  V=0  when  x=  +oo  ,  show  that  if  K  and  n  are  positive  so 
are  g  and  /. 

[In  Angstrom's  method  of  measuring  K  (the  "  diffusivity  "),  one 
end  of  a  very  long  bar  is  subjected  to  a  periodic  change  of  temperature 
V0  sin  nt.  This  causes  heat  waves  to  travel  along  the  bar.  By  measur- 

ing their  velocity  and  rate  of  decay  n/f  and  g  are  found.  K  is  then 
calculated  from  K  =  n/2fg.] 

dV        d2V 
(7)  Find  a  solution  of  -^-  =  K^~y  reducing  to  V0  sin  nt  for  x=0 

and  to  zero  for  x  =  +  oo  .       dt         dx 
[This  is  the  problem  of  the  last  question  when  no  radiation  takes 

place.  The  bar  may  be  replaced  by  a  semi-infinite  solid  bounded  by 
a  plane  face,  if  the  flow  is  always  perpendicular  to  that  face.  Kelvin 
found  K  for  the  earth  by  this  method.] 

(8)  Prove  that  the  simultaneous  equations 

are  satisfied  by  V  =  V0e-^+iJ^+int, 

if  g*-p  =  RK-n*LC, 

2fg  =  n(RC  +  LK), 

and  V(  R  +  iLn)  =  V02(K  +  iCn). 

[These  are  Heaviside's  equations  for  a  telephone  cable  with  resist- 
ance R,  capacity  C,  inductance  L,  and  leakance  K,  all  measured  per 

unit  length.     /  is  the  current  and  V  the  electromotive  force.] 

(9)  Show  that  in  the  last  question  g  is  independent  of  n  if  RC  =  KL. 
[The  attenuation  of  the  wave  depends  upon  g,  which  in  general 

depends  upon  n.  Thus,  if  a  sound  is  composed  of  harmonic  waves  of 
different  frequencies,  these  waves  are  transmitted  with  different  degrees 
of  attenuation.     The  sound  received  at  the  other  end   is  therefore 
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distorted.     Heaviside's  device  of  increasing  L  and  K  to  make  RC  =  KL 
prevents  this  distortion.] 

(10)  In  question  (8),  if  L  =  K=0,  show  that  both   V  and  /  are 
propagated  with  velocity  <\/(2n/RC). 

[The  velocity  is  given  by  n/f.] 

(11)  Show  that  the  simultaneous  equations 

kdPdy    5/3. fidadR    dQ. 

c  dt     dy     dz  ' c  dt      dy     dz  ' k  dQ    da     dy lxd($_dP    dR, * 
c  dt      dz     dx  ' 

c   dt     dz     dx 

kdR    d(3    da 

c  dt     dx     dy ' 

lxdy_dQ     dP, 

c  dt     dx     dy  ' 
are  satisfied  by 

P=0; a=0; 

£=0; /3  =  /30sin  y(x-vt) ; 

R=R0  sin  p  (x  - vt);     y  =  0; 
provided  that  v =  c/Vk/uL  and  /50  = 

=  -VWfx)K 

[These  are  Maxwell's  electromagnetic  equations  for  a  dielectric  of 
specific  inductive  capacity  k  and  permeability  /x.  P,  Q,  R  are  the 
components  of  the  electric  intensity  and  a,  /3,  y  those  of  the  magnetic 
intensity,  c  is  the  ratio  of  the  electromagnetic  to  the  electrostatic 
units  (which  is  equal  to  the  velocity  of  light  in  free  ether).  The  solution 

shows  that  plane  electromagnetic  waves  travel  with  the  velocity  c/^/k/u, 
and  that  the  electric  and  magnetic  intensities  are  perpendicular  to  the 
direction  of  propagation  and  to  each  other.] 

dV        d2V 
(12)  Find  a  solution  of  -^-  —  K  ̂ -j  such  that 

F=/=oo  if  t=  +oo  ; 

F=0  if  x=0  or  ir,  for  all  values  of  t ; 

V  =  ttx-x2  if  t  =  0,  for  values  of  x  between  0  and  ir. 

[N.B.     Before  attempting  this  question  read  again  Arts.  46  and  49. 

V  is  the  temperature  of  a  non-radiating  rod  of  length  ir  whose  ends  are 

kept  at  0°,  the  temperature  of  the  rod  being  initially  (ttx-x2)°  at  a 
distance  x  from  an  end.] 

(13)  What  does  the  solution  of  the  last  question  become  if  the 
length  of  the  rod  is  I  instead  of  7r  ? 

[N.B.     Proceed  as  in  Art.  50.] 

(14)  Solve  question  (12)  if  the  condition   7  =  0  for  x  =  0  or  ir  is 
dV 

replaced  by  •=—  =  0  for  x  =  0  or  ir. 

[Instead  of  the  ends  being  at  a  constant  temperature,  they  are  here 
treated  so  that  no  heat  can  pass  through  them.] 

(15)  Solve  question  (12)  if  the  expression  ttx-x2  is  replaced  by  100. 
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dV         d2V (16)  Find  a  solution  of  -=-=K  =-—  such  that 
at         ox* 

T^=oo  if  t=  +00  ; 

F  =  100  if  x=0  or  ir  for  all  values  of  t ; 

F  =  0  if  /=0  for  all  values  of  x  between  0  and  x. 

[Here  the  initially  ice-cold  rod  has  its  ends  in  boiling  water.] 
(17)  Solve  question  (15)  if  the  length  is  I  instead  of  ir.     If  I  increases 

indefinitely,  show  that  the  infinite  series  becomes  the  integral 
200  r  1 
7r  J0  a 

e  KaH  sin  ax  da. 

[N.B.  This  is  called  a  Fourier's  Integral.  To  obtain  this  residt 
put  (2r  +  l)Tr/l  =  a    and     2x//  =  ̂a. 

Kelvin  used  an  integral  in  his  celebrated  estimate  of  the  age  of  the 
earth  from  the  observed  rate  of  increase  of  temperature  underground. 
(See  example  (107)  of  the  miscellaneous  set  at  the  end  of  the  book.) 

Strutt's  recent  discovery  that  heat  is  continually  generated  within  the 
earth  by  radio-active  processes  shows  that  Kelvin's  estimate  was  too 
small.] 

dV        d2V 
(18)  Find  a  solution  of  -=-==K^~y  such  that 

V  is  finite  when  t  =  +  co  ; 

dV  ■] -=-=0  when  x  =  0, 1 
ox  Y  for  all  values  of  t ; 

F=0  when  x  =  lj 

V=V0  when  t  =  0,  for  all  values  of  x  between  0  and  I. 

[If  a  small  test-tube  containing  a  solution  of  salt  is  completely 
submerged  in  a  very  large  vessel  full  of  water,  the  salt  diffuses  up  out 

of  the  test-tube  into  the  water  of  the  large  vessel.     If  VQ  is  the  initial 
concentration  of  the  salt  and  I  the  length  of  test-tube  it  fills,  V  gives 
the  concentration  at  any  time  at  a  height  x  above  the  bottom  of  the 

dV 
test-tube.     The  condition  ^—  =  0  when  x  =  0  means  that  no  diffusion 

ox 
takes  place  at  the  closed  end.     V  =  0  when  x  =  l  means  that  at  the  top 
of  the  test-tube  we  have  nearly  pure  water.] 

(19)  Find  a  solution  of  ̂ y  =  v2^~  such  that 

y  involves  x  trigonomctrically  ; 

?/=0  when  x  —  0  or  it,  for  all  values  of  t ; 
dy 

~=0  when  1  =  0,  for  all  values  of  x  ; 
ot 

y  =  mx  between  #  =  0  and  — , 

y  =  ?n{TT-x)   between  £=o   and  7r, 

for  nil  values  of  I. 
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[N.B.     See  the  second  worked  example  of  Art.  48. 
y  is  the  transverse  displacement  of  a  string  stretched  between  two 

points  a  distance  ir  apart.  The  string  is  plucked  aside  a  distance 
nnr/2  at  its  middle  point  and  then  released.] 

UtU 

*  (20)  Writing  the  solution  of  j~  =  D2y,  where  D  is  a  constant,  in the  form 

d2y    d2y 
deduce  the  solution  of  ̂ ri=-^4  in  the  form 

ox2    ol2 

y  =  exDA+e-xDB, 

=tHt  in  the  form 

at2 

y=f(t  +  x)  +  F(t-x) 

by  substituting  =-  for  D,  f(t)  and  F(t)  for  A  and   B  respectively,  and 

using  Taylor's  theorem  in  its  symbolical  form 

f(t  +  x)  =  e*Df{t). 
[The  results  obtained  by  these  symbolical  methods  should  be 

regarded  merely  as  probably  correct.  Unless  they  can  be  verified  by 
other  means,  a  very  careful  examination  of  the  argument  is  necessary 
to  see  if  it  can  be  taken  backwards  from  the  result  to  the  differential 

equation. 
Heaviside  has  used  symbolical  methods  to  solve  some  otherwise 

insoluble  problems.     See  his  Electromagnetic  Theory.  J 

Q/1J 

*  (21)  From  the  solution  of  -—  =  Dhi,  where  D  is  a  constant,  deduce 
.         .  ay    o£y  .      .     . 

that  of  jr-  —  %fir  in  the  form 
d2f    x2  dif 

[This  is  not  a  solution  unless  the  series  is  convergent.] 
Use  this  form  to  obtain  a  solution  which  is  rational,  integral,  and 

algebraic  of  the  second  degree  in  t. 

d2y        d2y 
*(22)  Transform  the  equation  ̂ j  —  ̂ ^i  by  changing   the  inde- 

pendent variables  x  and  i  to  Z  and  T,  where 

X  =  x-at;     T  =  x  +  at. 

Hence  solve  the  original  equation. 

*To  be  omitted  on  a  first  reading. 



CHAPTER   V 

EQUATIONS   OF  THE   FIEST   ORDER  BUT   NOT  OF  THE 
FIRST   DEGREE 

51.  In  this  chapter  we  shall  deal  with  some  special  typee  of 

equations  of  the  first  order  and  of  degree  higher  than  the  first  for 
which  the  solution  can  sometimes  be  obtained  without  the  use  of 
infinite  series. 

These  special  types  are  : 

(a)  Those  solvable  for  p. 

(b)  Those  solvable  for  y. 

(c)  Those  solvable  for  x. 

52.  Equations  solvable  for  p.  If  we  can  solve  for  p,  the  equation 

of  the  nth  degree  is  reduced  to  n  equations  of  the  first  degree,  to 
which  we  apply  the  methods  of  Chap.  II. 

Ex.  (i).  The  equation  p2  +  px+py  +  xy  =  0  gives 
p=  -x     or     p=  -y  ; 

from  which  2y  =  -  x2  +  c1     or     x  =  -  log  y  +  c2  ; 
or,  expressed  as  one  equation, 

(2y  +  x2-Cl)(x  +  \ogy-c2)=0   (1) 
At  this  point  we  meet  with  a  difficulty  ;  the  complete  primitive 

apparently  contains  two  arbitrary  constants,  whereas  we  expect  only 
one,  as  the  equation  is  of  the  first  order. 

But  consider  the  solution 

(2y  +  x2  -  c)(x  +  log  y -  c)  =  0   (2) 

If  we  are  considering  only  one  value  of  each  of  the  constants  c,  clt 
and  c2,  these  equations  each  represent  a  pair  of  curves,  and  of  course 
not  the  same  pair  (unless  c  =  c1=c2).  But  if  we  consider  the  infinite 
set  of  pairs  of  curves  obtained  by  giving  the  constants  all  possible 
values  from  -  oo  to  +  go  ,  we  shall  get  the  same  infinite  set  when  taken 
altogether,  though  possibly  in  a  different  order.  Thus  (2)  can  be  taken 
as  the  complete  primitive. 

62 
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Ex.  (ii).  p2+p -2=0. 
Here  p  =  1     or    p  =  -  2, 

giving  y=x  +  c1    or    y=-2x  +  c2. 
As  before,  we  take  the  complete  primitive  as 

(y-x-c)(y  +  2x-c)=0, 

not  (y-x-c1)(y  +  2x-c2)=0. 
Each  of  these  equations  represents  all  lines  parallel  either  to 

y=x  or  to  y  =  -2x. 
Examples  for  solution. 

♦/(I)  p2  +  p-6=0.  ^(2)  p2  +  2xp  =  3x2.  v/(3)  p2  =  a.B 

(4)  x  +  yp2=p(l+xy).  (5)  p3-p(x2  +  xy  +  y2)+xy(x  +  y)=0. 

v-<6)  y2-  2p  cosh  x  +  1=0. 

53.  Equations  solvable  for  y.    If  the  equation  is  solvable  for  y, 

we  differentiate  the  solved  form  with  respect  to  x. 

Ex.  (i).  p2-py  +  x=>0. 

Solving  for  y,  V=P  +  ~- 

„.„         .    .  dp    1      x  dp 
Differentiating,  P^ir  ̂    5  j~  » °  r     dx    p    pl  ax 

l\dx     x 

p) dp    p2 This  is  a  linear  equation  of  the  first  order,  considering  p  as  the 
independent  variable.     Proceeding  as  in  Art.  19,  the  student  will  obtain 

x=p(c+cosh~1p)(p2-l)     . 
00  —It 

Hence,  as     y=p  +  -,     y  =* p  +  (c  +  cosh^p) (p2  - 1)    . 

These  two  equations  for  x  and  y  in  terms  of  p  give  the  parametric 
equations  of  the  solution  of  the  differential  equation.  For  any  given 
value  of  c,  to  each  value  of  p  correspond  one  definite  value  of  x  and 
one  of  y,  defining  a  point.  As  p  varies,  the  point  moves,  tracing  out 

a  curve.  In  this  example  we  can  eliminate  p  and  get  the  equation  con- 
necting x  and  y,  but  for  tracing  the  curve  the  parametric  forms  are  as 

good,  if  not  better. 

Ex.  (ii).  3p5-py  +  l=0. 

Solving  for  y,  y  =  3p*  +  p~l. 

Differentiating,  p  =  I2ps-j-  -  p~2  .~, 

i.e.     dx  =  (12p2-p'3)dp. 

Integrating,  x  =  4^3  +  \p~2  +  c,  ~\ 
and  from  above,  y  =  3pi  +  p~1.         J 

The  student  should  trace  the  graph  of  this  for  some  particular  value 
of  c,  say  c  =  0. 
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54.  Equations  solvable  for  x.    If  the  equation  is  solvable  for  x, 

we  differentiate  the  solved  form  with  respect  to  y,  and  rewrite  -y- 
1 

in  the  form  - . 
V 

Ex.  p2-py  +  x=0.  This  was  solved  in  the  last  article  by  solving 
for  y. 

Solving  for  x,  x=py-  p%. 
Differentiating  with  respect  to  y, 

1  dp         dp 

which  is  a  linear  equation  of  the  first  order,  considering  p  as  the  inde- 
pendent and  y  as  the  dependent  variable.  This  may  be  solved  as  in 

Art.  19.     The  student  will  obtain  the  result  found  in  the  last  article. 

Examples  for  solution. 

(1)  x  =  4p  +  4:p3.  (2)  p2-2xp  +  l=0. 

\   (3)  y=p2x  +  p.  (4)  y=x+pz. 

(5)  p3  +  p  =  ev.  (6)  2y+p2  +  2p  =  2x(p  +  l). 

(7)  p3-p  (y  +  3)+x  =  0.  (8)  y  =  pBm  p  +  cosp.  - 

(9)  y=p  tan  2>  + log  cos  p.  (10)  ep~y=p2-l. 

(12)  Prove  that  all  curves  of  the  family  given  by  the  solution  of 
Ex.  1  cut  the  axis  of  y  at  right  angles.  Find  the  value  of  c  for  that 
curve  of  the  family  that  goes  through  the  point  (0,  1). 

Trace  this  curve  on  squared  paper. 

(13)  Trace  the  curve  given  by  the  solution  of  Ex.  9  with  c=0. 
Draw  the  tangents  at  the  points  given  by  p  =  0,  p=l,  p  =  2  and  p  =  S, 
and  verify,  by  measurement,  that  the  gradients  of  these  tangents  are 
respectively  0,  1,  2  and  3. 



CHAPTER   VI 

SINGULAR  SOLUTIONS* 

55.  We  know  from  coordinate  geometry  that  the  straight  line 

y  =  mx  +  —  touches  the  parabola  y2  =  iax,  whatever  the  value  of  m. 

Consider  the  point  of  contact  P  of  any  particular  tangent.     At 

P  the  tangent  and  parabola  have  the  same  direction,  so  they  have 

a  common  value  of  -,-,  as  well  as  of  x  and  y. 

Fig.  7. 

But  for  the  tangent  m=^-=jp  say,  so  the  tangent  satisfies  the 

differential  equation  y=px+~. 

Hence  the  equation  holds  also  for  the  parabola  at  P,  where  x, 
y,  and  p  are  the  same  as  for  the  tangent.  As  P  may  be  any  point 

on  the  parabola,  the  equation  of  the  parabola  y2  =  iax  must  be  a 
solution  of  the  differential  equation,  as  the  student  will  easily  verify. 

*  The  arguments  of  this  chapter  will  be  based  upon  geometrical  intuition.  The 
results  therefore  cannot  be  considered  to  be  proved,  but  merely  suggested  as 
probably  true  in  certain  cases.  The  analytical  theory  presents  grave  difficulties 
(see  M.  J.  M.  Hill,  Proc.  Loud.  Math.  Soc,  1918). 
P.U.E.  t)5  B 
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In  general,  if  we  have  any  singly  infinite  system  of  curves  which 

all  touch  a  fixed  curve,  which  we  will  call  their  envelope*  and  if  this 
family  represents  the  complete  primitive  of  a  certain  differential 
equation  of  the  first  order,  then  the  envelope  represents  a  solution 

of  the  differential  equation.  For  at  every  point  of  the  envelope 
x,  y,  and  p  have  the  same  value  for  the  envelope  and  the  curve  of 
the  family  that  touches  it  there. 

Such  a  solution  is  called  a  Singular  Solution.  It  does  not 

contain  any  arbitrary  constant,  and  is  not  deducible  from  the 

Complete  Primitive  by  giving  a  particular  value  to  the  arbitrary 
constant  in  it. 

Example  for  solution. 

Prove  that  the  straight  line  y  =  x  is  the  envelope  of  the  family  of 
parabolas  y  =  x  +  \{x-c)2.  Prove  that  the  point  of  contact  is  (c,  c), 
and  that  p  —  \  for  the  parabola  and  envelope  at  this  point.  Obtain 
the  differential  equation  of  the  family  of  parabolas  in  the  form 

y  —  x  +  (p- 1)2,  and  verify  that  the  equation  of  the  envelope  satisfies  this. 
Trace  the  envelope  and  a  few  parabolas  of  the  family,  taking  c  as 

0,  1,  2,  etc. 

56.  We  shall  now  consider  how  to  obtain  singular  solutions.  It 
has  been  shown  that  the  envelope  of  the  curves  represented  by  the 

complete  primitive  gives  a  singular  solution,  so  we  shall  commence 

by  examining  the  method  of  finding  envelopes. 
The  general  method  t  is  to  eliminate  the  parameter  c  between 

f(x,  y,  c)  =0,  the  equation  of  the  family  of  curves,  and 

I- 

E.g.         if    f(x,y,c)  =  0    is    y-cx--=0,   (1) 

|=0    is       -  *  +  l=0   (2) 

giving  c  =  ±  l/^x. 

*In  Lamb's  Infinitesimal  Calculus,  2nd  ed.,  Art.  155,  the  envelope  of  a 
family  is  defined  as  the  locus  of  ultimate  intersection  of  consecutive  curves  of 
the  family.  As  thus  defined  it  may  include  node-  or  cusp  loci  in  addition  to  or 
instead  of  what  wo  have  called  envelopes.  (We  shall  give  a  geometrical  reason  for 
this  in  Art.  56  ;   see  Lamb  for  an  analytical  proof.) 

t  See  Lamb's  Infinitesimal  Calculus,  2nd  ed.,  Art.  155.  If  f(x,  y,  c)  is  of 
the  form  Lci  +  Mc  +  N,  the  result  comes  to  J\12  =  4LN.     Tims,  for 

1     o 

y  -  ex  -  -  =  0, 9  c       ' 

i.  e.     c2x  -  cy  +  1  =  0, 

the  result  is  y2  =  4x. 
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Substituting  in  (1), y=±2^/x, 

or  y2  =  4:X. 
This  method  is  equivalent  to  finding  the  locus  of  intersection  of 

f(x,  y,  c)=0, 
and  f(x,y,c  +  h)=0, 
two  curves  of  the  family  with  parameters  that  differ  by  a  small 

quantity  h,  and  proceeding  to  the  limit  when  h  approaches  zero. 

The  result  is  called  the  c-discriminant  oif(x,  y,  c)  =0. 

57.  Now  consider  the  diagrams  8,  9,  10,  11. 

Fig.  8  shows  the  case   where   the   curves  of   the  family  have 
no   special   singularity.     The   locus   of   the  ultimate  intersections 

Fig   8. 

PQRSTUV  is  a  curve  which  has  two  points  in  common  with  each 
of  the  curves  of  the  family  (e.g.  Q  and  R  lie  on  the  locus  and  also 

on  the  curve  marked  2).  In  the  limit  the  locus  PQRSTUV  there- 
fore touches  each  curve  of  the  family,  and  is  what  we  have  defined 

as  the  envelope. 

In  Fig.  9  each  curve  of  the  family  has  a  node.  Two  con- 
secutive curves  intersect  in  three  points  (e.g.  curves  2  and  3  in  the 

points  P,  Q,  and  R). 

The  locus  of  such  points  consists  of  three  distinct  parts  EE', 
AA',  and  BB' . 

When  we  proceed  to  the  limit,  taking  the  consecutive  curves 

ever  closer  and  closer,  A  A'  and  BB'  will  move  up  to  coincidence 

with  the  node-locus  iVAT',  while  EE'  will  become  an  envelope.     So 
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in  this  case  we  expect  the  c-discriminant  to  contain  the  square  of 

the  equation  of  the  node-locus,  as  well  as  the  equation  of  the  envelope. 

E!-^£-»vv«i 

Fig.  9. 

As  Fig.  10  shows,  the  direction  of  the  node-locus  NN'  at  any 
point  P  on  it  is  in  general  not  the  same  as  that  of  either  branch  of 

the  curve  with  the  node  at  P.  The  node-locus  has  x  and  y  in  common 

with  the  curve  at  P,  but  not  p,  so  the  node-locus  is  not  a  solution  of 
the  differential  equation  of  the  curves  of  the  family. 

Fig.  10. 

If  the  node  shrinks  into  a  cusp,  the  loci  EE'  and  NN'  of  Fig.  10 
move  up  to  coincidence,  forming  the  cusp-locus  CC  of  Fig.  11. 

Now  NN'  was  shown  to  be  the  coincidence  of  the  two  loci  AA'  and 

BB'  of  Fig.  9,  so  CC  is  really  the  coincidence  of  three  loci,  and 
its  equation  must  be  expected  to  occur  cubed  in  the  c-discriminant. 

Fig.  11  shows  that  the  cusp-locus,  like  the  node-locus,  is  not 
(in  general)  a  solution  of  the  differential  equation. 

K 
FIG.    11. 

To  sum  up,  we  may  expect  the  c-discriminant  to  contain 

(i)  the  envelope, 

(ii)  the  node-locus  squared, 

(iii).«  the  cusp-locus  cubed. 
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The  envelope  is  a  singular  solution,  but  the  node-  and  cusp- 

loci  are  not  (in  general  *)  solutions  at  all. 

58.  The  following  examples  will  illustrate  the  preceding  results  : 

Ex.  (i).  y=p2. 

The  complete  primitive  is  easily  found  to  be  iy  =  (x-c)2, 
i.e.     c2-2cx  +  x2-±y  =  0. 

As  this  is  a  quadratic  in  c,  we  can  write  down  the  discriminant  at 

once  as  (2z)2  =  4(a;2-4*/), 
i.e.  y  =  0,  representing  the  envelope  of  the  family  of  equal  parabolas 
given  by  the  complete  primitive,  and  occurring  to  the  first  degree  only, 
as  an  envelope  should. 

y 

Flu.  12. 

Ex.  (ii). 
%y  =  2px-2 

V 

Proceeding  as  in  the  last  chapter,  we  get 

i.e.    px2  -  2p2  =  (2x*  -  ipx) 

dp 

dx' 

i.e.    a;2-2p  =  0    or    p  =  2x 

dp 

dx' 

.(A) 

dx       dp —  =2      > 
x         p 

*  We  say  in  general,  because  it  is  conceivable  that  in  some  special  example  a 

node-  or  cusp-locus  may  coincide  with  an  envelope  or  with  a  curve  of  the  family. 
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log  x  =  2  log  p  -  log  c, 

cx=p2, 1      8 

whence  3y  =  2c%*  -  2c, 

i.e.  (3?/  +  2c)2  =  402?,  a  family  of  semi-cubical  parabolas  with  their  cusps 
on  the  axis  of  y. 

The  c-discriminant  is       (3y  -  x3)2  =  9y2, 

i.e.    x3(6?/-x3)=0. 

The  cusp-locus  appears  cubed,  and  the  other  factor  represents  the 
envelope. 

It  is  easily  verified  that  6y  =  x3  is  a  solution  of  the  differential 
equation,  while  x=0  (giving  p  =  oo)  is  not. 

If  we  take  the  first  alternative  of  the  equations  (a), 

i.e.     x< 
2p=0, 

we  get  by  substitution  for  p  in  the  differential  equation 

3*/ =4*3, 
i.e.  the  envelope. 

This  illustrates  another  method  of  finding  singular  solutions. 

Examples  for  solution. 

Find  the  complete  primitives  and  singular  solutions  (if  any)  of  the 

following  differential  equations.     Trace  the  graphs  for  Examples  1-4: 

(1)  ±p2-9x  =  0.  (2)  ip2(x-2)  =  l. 

(3)  xp2-2yp  +  4x  =  0. 

(5)  p2  +  2xp-y  =  0. 

(7)  ixp2  +  iyp  -  1  =0. 

(4)  ?)2  +  ?/2-l=0. 
(6)  xp2-2yp  +  l=0. 
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59.  The  p-discriminant.  We  shall  now  consider  how  to  obtain 

the  singular  solutions  of  a  differential  equation  directly  from  the 
equation  itself,  without  having  to  find  the  complete  primitive. 

Consider  the  equation    x2p2  -  yp  + 1  =0. 
If  we  give  x  and  y  any  definite  numerical  values,  we  get  a  quad- 

ratic for  p.    For  example,  if 

a  =  v%    y=3,    2^2-3^  +  l=0, 

p=\    or     1. 
Thus  there  are  two  curves  of  the  family  satisfying  this  equation 

through  every  point.  These  two  curves  will  have  the  same  tangent 
at  all  points  where  the  equation  has  equal  roots  in  p,  i.e.  where 

the  discriminant  y2  -  4x2  =0. 

Similar  conclusions  hold  for  the  quadratic  Lp2  +  Mp+N=0} 
where  L,  M,  N  are  any  functions  of  x  and  y.  There  are  two  curves 

through  every  point  in  the  plane,  but  these  curves  have  the  same 

direction  at  all  points  on  the  locus  M2  -  4LN  =0. 
More  generally,  the  differential  equation 

f(x,  y,  p)  =  L0p"  +LlP"-i  +L2p-2  + ...  +Ln  =0, 

where  the  L's  are  functions  of  x  and  y,  gives  n  values  of  p  for  a 
given  pair  of  values  of  x  and  y,  corresponding  to  n  curves  through 

any  point.     Two  of  these  n  curves  have  the  same  tangent  at  all 

points  on  the  locus  given  by  eliminating  p  from 

J{x,y,p)=o, 

l  
  -»■ 

for  this  is  the  condition  given  in  books  on  theory  of  equations  for 

the  existence  of  a  repeated  root. 

We  are  thus  led  to  the  ̂ -discriminant,  and  we  must  now  in- 
vestigate the  properties  of  the  loci  represented  by  it. 

60.  The  Envelope.    The  ̂ -discriminant  of  the  equation 
1 

y=px  +  ~ 

or  p2x-py  +  1=0  f*- 

is  y2  =  ix. 

We  have  already  found  that  the  complete  primitive  consists  of 

the  tangents  to  the  parabola,  which  is  the  singular  solution.  Two 

of  these  tangents  pass  through  every  point  P  in  the  plane,  and 

these  tangents  coincide  for  points  on  the  envelope. 
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This  is  an  example  of  the  59-discriminant  representing  an  envelope. 
Fig.  15  shows  a  more  general  case  of  this. 

FIG.  14. 

Consider  the  curve  SQP  as  moving  up  to  coincidence  with  the 

curve  PRT,  always  remaining  in  contact  with  the  envelope  QRU. 
The  point  P  will  move  up  towards  R,  and  the  tangents  to  the  two 
curves  through  P  will  finally  coincide  with  each  other  and  with  the 

tangent  at  the  envelope  at  R.  Thus  R  is  a  point  for  which  the  p'a 
of  the  two  curves  of  the  system  through  the  point  coincide,  and 

consequently  the  ̂ -discriminant  vanishes. 
U 

Fig.  15. 

Thus  the  jo-discriminant  may  be  an  envelope  of  the  curves  of 
the  system,  and  if  so,  as  shoAvn  in  Art.  55,  is  a  singular  solution. 

61.  The  tac-locus.  The  envelope  is  thus  the  locus  of  points 
where  two  consecutive  curves  of  the  family  have  the  same  value 

of  p.  But  it  is  quite  possible  for  two  non-consecutive  curves  to 
touch. 

Consider  a  family  of  circles,  all  of  equal  radius,  whose  centres 
lie  on  a  straight  line. 
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Fig.  16  shows  that  the  line  of  centres  is  the  locus  of  the  point 

of  contact  of  pairs  of  circles.     This  is  called  a,,  tac-locus.    Fig.  17 

fig.  16. 

shows  circles  which  do  not  quite  touch,  but  cut  in  pairs  of  neigh- 

bouring points,  lying  on  two  neighbouring  loci  AA' ,  BB' .     When, 
we  proceed  to  the  limiting  case  of  contact  these  two  loci  coincide 

in  the  tac-locus  TT .     Thus  the  ̂ -discriminant  may  be  expected  to 

contain  the  equation  of  the  tac-locus  squared. 

Fig.  17. 

It  is  obvious  that  at  the  point  P  in  Fig.  16  the  direction  of 
the  tac-locus  is  not  the  direction  of  the  two  circles.  Thus  the 

relation  between  x,  y,  and  p  satisfied  by  the  circles  will  not  be 

satisfied  by  the  tac-locus,  which  has  the  same  x  and  y  but  a  different 

p  at  P.  In  general,  the  tac-locus  does  not  furnish  a  solution  of  tlie 
differential  equation. 

62.  The  circles  of  the  last  article  are  represented  by 

(x  +  c)2+y2=r2, 
if  the  line  of  centres  is  Ox. 

This  gives  x+c  =  Vr2  - y2, 

or  1=  -yp/Vr2-y2, 
i.e. 

y2p2  +  y2 

r2=0. 

The  ̂ -discriminant  of  this  is  y2(y2  -r2)  =  0. 
The  line  y=0  (occurring  squared,  as  we  expected)  is  the  tac- 

locus,  y=±r  are  the  envelopes  EE'  and  FF'  of  Fig.  16;  y  =  ±r, 
giving  p=0,  are  singular  solutions  of  the  differential  equation,  but 

y  =  0  does  not  satisfy  it. 

63.  The  cusp-locus.  The  contact  that  gives  rise  to  the  equal 

roots  in  p  may  be  between  two  branches  of  the  same  curve  instead 
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of  between  two  different  curves,  i.e.  the  ̂ -discriminant  vanishes  at 
a  cusp. 

As  shown  in  Fig.  18,  the  direction  of  the  cusp-locus  at  any 
point  P  on  it  is  in  general  not  the  same  as  that  of  the  tangent  to 

the  cusp,  so  the  cusp-locus  is  not  a  solution  of  the  differential  equation. 

C'
 

Fig.  18. 

It  is  natural  to  enquire  if  the  equation  of  the  cusp-locus  will 

appear  cubed  in  the  p- discriminant,  as  in  the  c-discriminant.  To 

decide  this,  consider  the  locus  of  points  for  which  the  two  p's  are 
nearly  but  not  quite  equal,  when  the  curves  have  very  flat  nodes. 

This  will  be  the  locus  NN'  of  Fig.  19.      In  the  limit,  when  the  nodes 

Fig.  19. 

contract  into  cusps,  we  get  the  cusp-locus,  and  as  in  this  case  there 

is  no  question  of  two  or  more  loci  coinciding,  we  expect  the  p- 
discriminant  to  contain  the  equation  of  the  cusp-locus  to  the  first 
power  only. 

64.  Summary  of  results.     The  ̂ -discriminant  therefore  may  be 
expected  to  contain 

(i)  the  envelope, 

(ii)  the  tac-locus  squared, 

4  (iii)  the  cusp-locus, 
and  the  c-discriminant  to  contain 

(i)  the  envelope, 

(ii)  the  node-locus  squared, 

(iii)  the  cusp-locus  cubed. 



SINGULAR  SOLUTIONS 

75 
Of  these  only  the  envelope  is  a  solution  of  the  differential 

equation. 

65.  Examples. 

Ex.(i).  ?2(2-3<V)2  =  4(l-t/). 
Writing  this  in  the  form 

fa_        2-3y 
dy-±2V(i-y)' 

we  easily  find  the  complete  primitive  in  the  form 

(a>-c)8=ya(l-y). 

The  c-discriminant  and  ̂ -discriminant  are  respectively 

y2(l-y)=0    and    (2-3y)2(l  -y)=0. 

1  -  y=0,  which  occurs  in  both  to  the  first  degree,  gives  an  envelope  ; 
y=0,  which  occurs  squared  in  the  c-discriminant  and  not  at  all  in 
the  p-discriminant,  gives  a  node-locus  ;  2  -  Sy  =  0,  which  occurs  squared 
in  the  ̂ -discriminant  and  not  at  all  in  the  c-discriminant,  gives  a 
tac -locus. 

It  is  easily  verified  that  of  these  three  loci  only  the  equation  of  the 
envelope  satisfies  the  differential  equation. 

no.  20. 

Ex.  (ii).  Consider  the  family  of  circles 

x2  +  y2  +  2cx  +  2c2-l=0. 

By  eliminating  c  (by  the  methods  of  Chap.  I.),  we  obtain  the  differ- 
ential equation 

2y2p2  +  2xyp  +  x2  +  y2  - 1  =0. 
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The  c-  and  ̂ -discriminants  are  respectively 

x2-2(x2  +  y2-l)=0    and    x2y2-2y2{x2  +  y2-l)=0, 

i.e.    x2  +  2y2-2=0    and  y2(x2  +  2y2-2)=0. 
x2  +  2y2-2=0  gives  an  envelope  as  it  occurs  to  the  first  degree  in 

both  discriminants,  while  y  =  0  gives  a  tac-locus,  as  it  occurs  squared 
in  the  p-discriminant  and  not  at  all  in  the  c-discriminant. 

FIG.  2t. 

Examples  for  solution. 

In  the  following  examples  find  the  complete  primitive  if  the  differ- 
ential equation  is  given  or  the  differential  equation  if  the  complete 

primitive  is  given.  Find  the  singular  solutions  (if  any).  Trace  the 
graphs. 

(1)  ix(x-l){x-2)p2-{3x2-6x  +  2)2  =  0.        (2)  4*;>2-(3z-l)2=0. 
(3)  yp2-2xp  +  y  =  0.  (4)  3xp2-6yp  +  x  +  2y=0. 
(5)  p2  +  2px3-ix2y  =  0.  '6)  p3-±xyp  +  8y2=0. 
(7)  x2  +  ?/2-2c£  +  c2cos2a  =  0.       (8)  c2  +  2cy  -x2  +  \  =  0. 

(9)  c2  +  (x  +  y)c  +  l-xy  =  0.  (10)  x2  +  y2 +  2cxy +  c2 -  1  =0. 

66.  Clairaut's  Form.*  We  commenced  this  chapter  by  con- 
sidering the  equation 

y  =  px  + V 

♦Alexis  Claude  Clairaut,  (if  Paris  (1713-176,")),  although  best  known  in  con- 
nection with  differential  equations,  wrote  chiefly  on  astronomy. 
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This  is  a  particular  case  of  Clairaut's  Form 
y=px+f(p)   (1) 

To  solve,  differentiate  with  respect  to  y,-*. 

p=p  +  {x+f'(p)}-£; 
therefore 

dp 

=  0, 

(2) 

dx~v>    P  =  C 
or  0=x+f'(p)   (3) 

Using  (1)  and  (2)  we  get  the  complete  primitive,  the  family  of 

straight  lines,  y  =  cx+f(c)   (4) 
If  we  eliminate  p  from  (1)  and  (3)  we  shall  simply  get  the  jo-dis- 

criminant. 

To  find  the  c-discriminant  we  eliminate  e  from  (4)  and  the  result 
of  differentiating  (4)  partially  with  respect  to  c,  i.e. 

0=x+f(c)   (5) 

Equations  (4)  and  (5)  differ  from  (1)  and  (3)  only  in  having  c 
instead  of  p.  The  eliminants  are  therefore  the  same.  Thus  both 

disoriminants  must  represent  the  envelope. 
Of  course  it  is  obvious  that  a  family  of  straight  lines  cannot 

have  node-,  cusp-,  or  tac-loci. 
Equation  (4)  gives  the  important  result  that  the  complete  primi- 

tive of  a  differential  equation  of  Clairaut's  Form  may  be  written  down 
immediately  by  simply  writing  c  in  place  of  p. 

67.  Example. 

Find  the  curve  such  that  OT  varies  as  tan  \fs,  where  T  is  the  point 
in  which  the  tangent  at  any  point  cuts  the  axis  of  x,  \Js  is  its  inclination 
to  this  axis,  and  0  is  the  origin. 

y 

O      T I'm.  22. 



therefore  x--  =  kp,  •< 
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From  the  figure,  OT  =  ON-TN 
=  x-y  cot  \fr 

V 

V 

since  tani//-=p; 

y 

V 

i.e.     y=px-kp2. 

This  is  of  Clairaut's  Form,  so  the  complete  primitive  is 

y  =  cx-  kc2, 
and  the  singular  solution  is  the  discriminant  of  this, 

i.e.    x2  =  iky. 

The  curve  required  is  the  parabola  represented  by  this  singular 
solution.  The  complete  primitive  represents  the  family  of  straight 
lines  tangent  to  this  parabola. 

Examples  for  solution. 

Find  the  complete  primitive  and  singular  solutions  of  the  following 
differential  equations.  Trace  the  graphs  for  Examples  (1),  (2),  (4),  (7), 
(8)  and  (9). 

7(1)  y=px+p2.  y(2)  y=px  +  p3. 

-/(3)  y=px  +  cosp.  (4)  y  =  px  +  ̂ {a2p2  +  b2). 

^(5)  p=log(px-y).  (6)  sinpxeos  y  =  coapxsiny+p. 

(7)  Find  the  differential  equation  of  the  curve  such  that  the  tangent 

makes  with  the  co-ordinate  axes  a  triangle  of  constant  area  k2,  and 
hence  find  the  equation  of  the  curve  in  integral  form. 

(8)  Find  the  curve  such  that  the  tangent  cuts  off  intercepts  from 
the  axes  whose  sum  is  constant. 

(9)  Find  the  curve  such  that  the  part  of  the  tangent  intercepted 
between  the  axes  is  of  constant  length. 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  VI. 

Illustrate  the  solutions  by  a  graph  whenever  possible. 

(1)  Examine  for  singular  solutions  p2  +  2xp  =  3x2. 

(2)  Reduce  xyp2-(x2  +  y2-l)p  +  xy  =  0 

to  Clairaut's  form  by  the  substitution  X  —  x2  ;    Y  =  y2. 
Hence  show  that  the  equation  represents  a  family  of  conies  touching 

the  four  sides  of  a  square. 
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(3)  Show  that      xyp2  +  (x2-y2-h2)p-xy  =  0 
represents  a  family  of  confocal  conies,  with  the  foci  at  (±  h,  0),  touching 
the  four  imaginary  lines  joining  the  foci  to  the  circular  points  at  infinity. 

(4)  Show  by  geometrical  reasoning  or  otherwise  that  the  sub- 

stitution x  =  aX+bY,    y  =  a'X+b'Y, 

converts  any  differential  equation  of  Clairaut's  form  to  another  equation 
of  Clairaut's  form. 

(5)  Show  that  the  complete  primitive  of  8p3x  =  y(12p2-9)  is 
(x  +  c)3  =  3y2c,  the  p-discriminant  y2(9x2-iy2)=0,  and  the  c-dis- 
criminant  y*(9x2  -  4ty2)  =  0.     Interpret  these  discriminants. 

(6)  Reduce  the  differential  equation 

x2p2  +  yp(2x  +  y)+y2=0,    where  p  =  -r- 

to  Clairaut's  form  by  the  substitution  £=y,  rj  =  xy. 
Hence,  or  otherwise,  solve  the  equation. 

Prove  that  y  +  ix  =  0  is  a  singular  solution  ;   and  that  y=0  is  both 
part  of  the  envelope  and  part  of  an  ordinary  solution.  [London.] 

(7)  Solve  y^iy-Xjj^^ij)  »  which  can  be  transformed  to 

Clairaut's  form  by  suitable  substitutions.  [London.] 

(8)  Integrate  the  differential  equations  : 

(i)  3{p  +  x)2  =  {p-xf. 

(ii)  y2{\  +ip2)- 2pxy -1=0. 
In  (ii)  find  the  singular  solution  and  explain  the  significance  of  any 

factors  that  occur.  [London.] 

(9)  Show  that  the  curves  of  the  family 

y2-2cx2y  +  c2(xi-x3)=0 
all  have  a  cusp  at  the  origin,  touching  the  axis  of  x. 

By  eliminating  c  obtain  the  differential  equation  of  the  family  in 
the  form 

ip2x2  (x  - 1 )  -  ipxy  (ix  -  3y)  +  ( 1 6a;  -  9)  y2  =  0. 

Show  that  both  discriminants  take  the  form  x3y2=0,  but  that  x=0 
is  not  a  solution,  while  y  =0  is  a  particular  integral  as  well  as  an  envelope. 

[This  example  shows  that  our  theory  does  not  apply  without  modi- 
fication to  families  of  curves  with  a  cusp  at  a  fixed  point.] 

(10)  Show  that  the  complete  primitive  of 

represents  the  family  of  equal  lemniscates  of  Bernoulli 
r2  =  a2  cos  2(0-  a), 

inscribed  in  the  circle  r  =  a,  which  is  the  singular  solution,  with  the 

point  r  =  0  as  a  node-locus. 
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(11)  Obtain   and  interpret  the   complete  primitive  and   singular 
solution  of  /dr\2 

&)
 " 

\d6J 

(12)  Show  that  r  =  cd-c2  is  the  complete  primitive  and  4r  =  #2  the 
singular  solution  of  dr      /gr\2 r'eTe-\Te)- 

Verify  that  the  singular  solution  touches  the  complete  primitive  at 

the  point  (c2,  2c),  the  common  tangent  there  making  an  angle  tan-1c vith  the  radius  vector. 



CHAPTER  VII 

MISCELLANEOUS  METHODS  FOR  EQUATIONS  OF  THE 
SECOND  AND  HIGHER  ORDERS 

68.  In  this  chapter  we  shall  be  concerned  chiefly  with  the 
reduction  of  equations  of  the  second  order  to  those  of  the  first 

order.  We  shall  show  that  the  order  can  always  be  so  reduced  if 

the  equation 
(i)  does  not  contain  y  explicitly  ; 

or  (ii)  does  not  contain  x  explicitly  ; 

or  (iii)  is  homogeneous. 

A  special  form  of  equation,  of  some  importance  in  Dynamics, 
may  be  reduced  by  using  an  integrating  factor. 

The  remainder  of  the  chapter  will  be  devoted  to  the  linear 

equation,  excluding  the  simple  case,  already  fully  discussed  in 
Chapter  III.,  where  the  coefficients  are  merely  constants.  It  will 
be  found  that  the  linear  equation  of  the  second  order  can  be  reduced 
to  one  of  the  first  order  if 

(i)  the  operator  can  be  factorised, 

or     (ii)  any  one  integral  belonging  to  the  complementary  function 
is  known. 

If  the  complete  complementary  function  is  known,  the  equation 
may  be  solved  by  the  method  of  Variation  of  Parameters.  This 

elegant  method  (due  to  Lagrange)  is  applicable  to  linear  equations 
of  any  order. 

Further  information  on  linear  equations,  such  as  the  condition 

for  exact  equations,  the  normal  form,  the  invariantive  condition  of 
equivalence,  and  the  Schwarzian  derivative,  will  be  found  in  the 

form  of  problems  among  the  miscellaneous  examples  at  the  end 

of  the  chapter,  with  hints  sufficient  to  enable  the  student  to  work 
them  out  for  himself. 

P.D.E.  81  K 
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We  shall  use  suffixes  to  denote  differentiations  with  respect  to 
dhi 

x,  e.g.  y2  for  tt|,  but  when  the  independent  variable  is  any  other 

than  x  the  differential  coefficients  will  be  written  in  full. 

69.  y  absent.     If  y  does  not  occur  explicitly  in  an  equation  of 

the  second  order,  write  p  for  yx  and  J-  for  y2. 

We  obtain  an  equation  containing  only  J-,  p,  and  x,  and  so  of 
the  first  order.  * 

Consider,  for  example,    xy2+y1  =  ix. 

This  transforms  into      Xj-+p=4:X, 

which  can  be  integrated  at  once 

xp  =  2x2  +  a, 

i.e.    p  =  2x  +  -. x 

By  integrating,  y  =  x2  +  a  log  x  +  b, 
where  a  and  6  are  arbitrary  constants. 

This  method  may  be  used  to  reduce  an  equation  of  the  nth  order 

not  containing  y  explicitly  to  one  of  the  (n  -  l)th. 

70.  x  absent.      If  x  is  the  absent  letter,  we  may  still  write  p  for 
.    ,  ,  dp     .  dp    dy  dp    dp  ^ 

yv  but  for  y2  we  now  write  V-fy,  since  V dy=TxWy  =^ -y«-     The 
procedure  reduces  an  equation  of  the  second  order  without  x  to  one 
of  the  first  order  in  the  variables  p  and  y. 

For  example,  W^Vx 

transforms  into  «/])-r=  p2, 

from  which  the  student  will  easily  obtain 

p=by    and    y  =  aehx. 
Examples  for  solution. 

(1)  2/2cos2x  =  l.  (2)  yyz+y^-yv  I       (3)  yy2  +  l=yi*. 
(4)  Reduce  to  the  previous  example,  and  hence  solve 

(5)  xy3  +  y 2  =  12x.  (6)  2/n  -  23/»-i  =gX- 
(7)  Integrate  and  interpret  geometrically 

(i+yi2)*_7g 
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(8)  The  radius  of  curvature  of  a  certain  curve  is  equal  to  the  length 
of  the  normal  between  the  curve  and  the  axis  of  x.  Prove  that  the 
curve  is  a  catenary  or  a  circle,  according  as  it  is  convex  or  concave  to the  axis  of  x. 

(9)  Find  and  solve  the  differential  equation  of  the  curve  the  length 
of  whose  arc,  measured  from  a  fixed  point  A  to  a  variable  point  P,  is 
proportional  to  the  tangent  of  the  angle  between  the  tangent  at  P  and the  axis  of  x. 

*71.  Homogeneous  equations.  If  x  and  y  are  regarded  as  of dimension  1, 
yx  is  of  dimension      0, 

y2  is  of  dimension  - 1, 

yz  is  of  dimension  -  2, 
and  so  on. 

We  define  a  homogeneous  equation  as  one  in  which  all  the  terms 
are  of  the  same  dimensions.  We  have  already  in  Chap.  II.  dealt 
with  homogeneous  equations  of  the  first  order  and  degree,  and  in 
Chap.  III.  with  the  homogeneous  linear  equation 

xnyn  +  Axn-iyn_x  +  Bxn~2yn_2  +  ...+  Exyx  +  Ky=0 
(where  A,  B,  ...  B,  K  are  merely  constants),  for  which  we  used  the 
substitution  x  =  (?  or  t  =log  x. 

Let  us  make  the  same  substitution  in  the  homogeneous  equation 

xijy2+xy12=3yy1   (1) 

Now  v  Ji%LjL*y Ul    dx  dt     xdt' 

^     dx         x2  dt     x  dx  dt 

_  1  dy    1  dt  d2y 
x2  dt     x  dx  dt2 

l^dy     \_d?y 

x2  dt     x2  dt2 ' 
Substituting  in  (1)  and  multiplying  by  x,  we  get 

y\dt2  dt)+\dt)  ~6ydt' 

d2y    fdii\2     .    du 

This  is  an  equation,  with  t  absent,  similar  to  those  in  the  last 
article  with  x  absent. 

Arts.  71-73  may  be  omitted  on  a  first  reading. 
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By  putting  -tt  =  ?>  the  student  will  easily  obtain 

yq=2(y2+b), 

giving  t+c  =  l\og(y2+b). 

Hence    y2+b=e^t+c^ 
=  ax4,  replacing  e4c  by  another  arbitrary  constant  a. 

72.  The  example  of  Art.  71  came  out  easily  because  it  had  no 

superfluous  a;'s  left  after  associating  x2  with  y2  and  x  with  yx.  In 
fact,  it  could  have  been  written 

y(*ty«) +(«&)" -3y(a^i). 
But  (^+^2)(2/-^i)+a;V«/2=0       (2) 

cannot  be  so  written.  To  reduce  this  to  a  form  similar  to  that  of 

the  last  example,  put  y=vx,  a  substitution  used  for  homogeneous 
equations  in  Chap.  II. 

(2)  becomes 
(x2  +  x2v2)  (vx  -  vxx2  -  vx)  +  xiv2(xv2  +  2uj)  =0, 

i.e.     -(1  +  v2)v1+v2(xv2+2v1)=0,  a. 

which  may  be  written      v2x2v2  =  (l  -v2)xv1   (3) 

"We  now  proceed  as  before  and  put  x  =  e\  giving 
dv 

dH    dv 

dfi'dt' (3)  becomes  ^--^=(1-^-, 
AH    dv  ,.v 

l-e'    VcU2=di>    (4) 
an  equation  with  t  absent. 

,    ,  dv  d2v       dq 
As  before,  put  j-j,    &-q& 

(4)  becomes  v2q^=q, 

i.e.    tq  =  I  (unless  q  =  0,  giving  y  =  ex), 

dv    vi 

and  x2v2=— 

dv  =    =1_1 
dt     V    a    v 

,,    av  dv    /        a2\, dt  =   =  (o+-        av, 
v  -  a     \      v-a/ 

t=av  +  a2 log  (v-a)  +  b, 

and  finally      log  x  =  ay/x  +  a2  log  (y  -  ax)  -  a2  log  x  +  b. 
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73.  By  proceeding  as  in  the  last  article,  we  can  reduce  any 
homogeneous  equation  of  the  second  order. 

Any  such  equation  can  be  brought  to  the  form 

ftyfayi>m/*)-o- 
For  example,  the  equation  of  Art.  71  when  divided  by  x  becomes 

while  that  of  Art.  72  divided  by  x3  becomes 

(i*5)G-*)+©»-* 
The  substitutions  y  =vx  and  x  =e*  transform 

/ (y/x>  Vx>  xVi)  =  0    to    /  (v,  xvx  +  v,  x2v2  +  2xvj)  =  0, 

j  ,r  /./     dv         d2v    dv\     n 
and  then  to  /^,  _ +v,  _.  +  _j=0, 

an  equation  with  t  absent,  and  therefore  reducible  to  the  first  order. 

Examples  for  solution. 

(1)  x2y2-xy1  +  y  =  0.  (2)  x2y2-xy1  +  5y  =  0. 

(3)  2x2yy2  +  y2  =  x2y12. 

(i)  Make  homogeneous  by  the  substitution  y  =  z2,  and  hence  solve 

2x2yy2  +  iy2  =  x2yx2  +  2xyyv 

74.  An  equation  occurring  in  Dynamics.  The  form  y2=f{y) 
occurs  frequently  in  Dynamics,  especially  in  problems  on  motion 
under  a  force  directed  to  a  fixed  point  and  of  magnitude  depending 
solely  on  the  distance  from  that  fixed  point. 

Multiply  each  side  of  the  equation  by  2yv    "We  get 
2y1y2  =  2f(y)yv 

Integrating,      y2  =  2 J  / (y) £dx=2]f  (y)  dy. 
This  is  really  the  equation  of  energy. 

d2x 

dt2 

o  or 

Applying  the  method   to    -,  z-  =  -  p2x,  (the  equation  of  simple 
harmonic  motion),  we  get 

zdtdt2~=~Zpxdt 
Integrating  with  respect  to  t, 

'dx  ,2 

(dx  2 (  j-  )  =  -f2x2  +  const.  =p2(a2  -x2),  say 
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Hence 
<ti=l   1_ 

dx    p  \/(a2-x2)' 1    .     ,  x 
t  =  -  sin-1-  +  const., 

p  a x  =  a  sin  (pt+e). 

Examples  for  solution. 

(1)  y2  =  y3-y,  given  that  yx=0  when  y  =  \. 
(2)  y2  =  e2y,  given  that  y  =  0  and  yx  =  \  when  x=0. 

(3)  y2  =  sec2  y  tan  y,  given  that  ?/=0  and  yx  =  \  when  x  =  0. " 
(l  or         nd  (Lt 

(4)  tt—  -^Tj  given  that  x  =  A  and  -r=0  when  <  =  0. <w2  x2  at 

[h  -  x  is  the  distance  fallen  from  rest  under  gravity  varying  inversely 
as  the  square  of  the  distance  x  from  the  centre  of  the  earth,  neglecting 
air  resistance,  etc.] 

...  d2u  P      .      . 

(5)  ffli  +  u  =  fiw>  m  the  two   cases 

(i)P  =  Hu2;     (\\)P  =  ijm*; 

given  that  0  = -771  =  0  when  u  —  ~,  where  /x,  h,  and  c  are  constants. (lu  c 

[These  give  the  path  described  by  a  particle  attracted  to  a  fixed 
point  with  a  force  varying  inversely  as  the  square  and  cube  respectively 
of  the  distance  r.  u  is  the  reciprocal  of  r,  6  has  its  ordinary  meaning 
in  polar  co-ordinates,  /u.  is  the  acceleration  at  unit  distance,  and  h  is 
twice  the  areal  velocity.  ] 

)\     75.  Factorisation  of  the  operator.     The  linear  equation. 

(x  +  2)y2  -  (2x+5)y1  +  2y  =  (x  +  l)ex 
may  be  written  as 

{(x  +  2)D2  -  (2x  +5)2)  +  2}y  =  (x  +  l)ex, 

where  D  stands  for  -p,  as  in  Chapter  III. 

Now  the  operator  in  this  particular  example  can  be  factorised, 

giving  {(x+2)D-l}(D-2)y  =  (x  +  l)ex. 

Put  (D-2)y=v. 

Then  {(x+2)D  -l}0-(x  +  l)&. 

This  is  a  linear  equation  of  the  first  order.  Solving  as  in  Art.  20, 

we  get  v  =  c{x+2)+ex, 

i.e.     (D-2)y  =  c(x+2)+ex, 
another  linear  equation,  giving  finally 

y  =  a(2x  +  5)  +  be2x  -  ex,  replacing  -  \c  by  a. 
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Of  course  it  is  only  in  special  cases  that  the  operator  can  be 
factorised.  It  is  important  to  notice  that  these  factors  must  be 

written  in  the  right  order,  as  they  are  not  commutative.  Thus,  on 
reversing  the  order  in  this  example,  we  get 

(D-2){(x  +  2)D-l}y  =  {(x+2)D2-(2x  +  4)D  +  2}y. 

Examples  for  solution. 

(1)  (x  +  l)y2  +  (x-l)yi-2y=0.  (2)  xy2  +  (x-\)yi-y  =  0. 

(3)  xy2  +  (x-l)y1-y  =  x2. 

(4)  xy2  +  (x2  +  l)yl  +  2xy  =  2x,  given  that  y  =  2  and  yx  =  0  when x=0. 

(5)  (x2  - 1)  y2  -  (4a;2  -  3x  -  5)  yx  +  (4z2  -  6x  -  5)  y  =  e2x,  given  that  y  =  1 
and  «/!  =  2  when  £  =  0. 

76.  One  integral  belonging  to  the  complementary  function  *  known. 
When  one  integral  of  the  equation 

y2  +  Py,  +  Qy=0     (1) 

is  known,  say  y  =  z,  then  the  more  general  equation  of  the  second 

order  y2  +  Py1  +  Qy=R,   (2) 
where  P,  Q,  R  are  functions  of  x,  can  be  reduced  to  one  of  the  first 

order  by  the  substitution         «  _  VZt 

Differentiating,  y1  =  v±z  +  vz1} 

y2  =  v2z+2v1z1+vz2. 

Hence  (2)  becomes 

t>gz  +  vx  (2z1  +Pz)+v(z2+Pz1+Qz)=0, 

i.e.    z^+v^z.+Pz)^,    (3) 

since  by  hypothesis  z2  +  Pz1  +Qz=0. 

(3)  is  a  linear  equation  of  the  first  order  in  vv 

Similarly  a  linear  equation  of  the  nth  order  can  be  reduced  to 

one  of  the  (n  - 1  )th  if  one  integral  belonging  to  the  complementary 
function  is  known. 

77.  Example. 

Consider  again  the  equation 

(x  +  2)y2-(2x  +  5)y1  +  2y  =  (x  +  l)ex   (4) 

*The  proof  of  Art.  29  that  the  general  solution  of  a  linear  differential  equation  is 
the  sum  of  a  Particular  Integral  and  the  Complementary  Function  holds  good  when 
the  coefficients  are  functions  of  x  as  well  as  in  the  case  when  they  arc  constants. 
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If  we  notice  that  y  =  e2x  makes  the  left-hand  side  of  the  equation 
zero,  we  can  put  y  =  ve2x 

giving  y1  =  (v1  +  2v)e2x, 

and  y2  =  (v2  +  4v,  +  4v)  e2x. 
Substitution  in  (4)  gives 

(x  +  2)v2e2x  +  {Mx  +  2)-(2x  +  5)}v1e2x 
+{i(x  +  2)-2(2x  +  5)+2}ve2x  =  (x  +  l)ex, 

dv 

i.e.     (x  +  2)j1  +  {2x  +  3)  v1  =  {x  +  l)e~x 

Solving  this  in  the  usual  way  (by  finding  the  integrating  factor) 

we  obtain  Vi  =  e~x  +  c(x  +  2) e~2x. 

Integrating,  v=  -  e~x  -  \c{2x  +  5)  e~2x  +  b, 

whence  y  =  ve2x  =  -  ex  -  ±c(2x  +  5)  +  be2x. 

Examples  for  solution. 

(1)  Show  that  y2  +  Pyx+Qy=0  is  satisfied  by  y  =  ex  if  1+P  +  Q=0, 
and  by  y  =  x  if  P  +  Qx  =  0. 

(2)  x2y2  +  xy1-y  =  8x3. 

(3)  x2y2-(x2  +  2x)y1  +  (x  +  2)y  =  xsex. 

(4)  xy2-2  (x  +  l)y1  +  (x  +  2)  y  =  (x-2)e2x. 

(5)  x2y2  +  xy1-9y  =  0,  given  that  y  =  x*  is  a  solution. 

(6)  xy2(x  cos  x-2  sin  x)  +(x2  +  2)yx  sin  x-2y  (x  sin  z  +  cos  x)  =0, 
given  that  y  =  x2  is  a  solution. 

78.  Variation  of  Parameters.  We  shall  now  explain  an  elegant 

but  somewhat  artificial  method  for  finding  the  complete  primitive 

of  a  linear  equation  whose  complementary  function  is  known. 

Let  us  illustrate  the  method  by  applying  it  to  the  example 

already  solved  in  two  different  ways,  namely, 

(x+2)y2-(2x+5)y1+2y  =  (x  +  l)e*,   ...(1) 

of  which  the  complementary  function  is  y  =  a(2x  +5)  +be2x. 

Assume  that  y  =  (2x+5)A  +e2xB,    (2) 
where  A  and  B  are  functions  of  x. 

This  assumption  is  similar  to,  but  more  symmetrical  than,  that 

of  Art.  77,  viz.  :  y^^x 
Differentiating  (2), 

y1=(2x  +5)At  +e2xBl  +2A  +2e2xB   (3) 

Now  so  far  the  two  functions  (or  parameters)  A  and  B  are  only 

connected  by  the  single  equation  (1).  We  can  make  them  satisfy 

the  additional  equation 

(2x+5)A1+e2xBl=0   (4) 
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(3)  will  then  reduce  to 
y1=2A+2e2xB   (5) 

Differentiating  (5), 

y2=±eZxB  +  2A1+2e2xBl   (6) 
Substitute  these  values  of  y,  yv  and  y2  from  equations  (2),  (5), 

and  (6)  respectively  in  (1).  The  co-factors  of  A  and  B  come  to 
zero,  leaving 

2{x+2)  Al+2(x  +  2)e2xB1=(x  +  l)ex   (7) 
(4)  and  (7)  are  two  simultaneous  equations  which  we  can  solve 

for  Ax  and  Bv  giving 

4l  Bi  (x  +  l)ex  __     (x  +  l)erx 
e2x~  -(2x  +b)~2e2x(x  +2)(1  -2x-5)~      4(z+2)2' 

w  .         (x  +  l)ex  _     exj    1  1      1  • 
Mence        ̂ i-     4(*  +  2)«"~Tls+2     (^T2)2/' 

€x
 

and.  by  integration,  A  =  - -r-.   ^  +  a,  where  a  is  a  constant. 
J        &  4  (a; +2) 

Similarly, 

R  =  (^x+5){x  +  l)e-x    er*_  f    _ _1_      _1   I 
x~   ,    4(z+2)2         "4  I      x+2    (ic+2)2/' 

and  B  =  ~{-\-2\+b. 4  \x+2      J 

Substituting  in  (2), 

y=v*H  -i(£2)+a}  +?{^2-2l +be" 
=  a(2x+5)+be2x-ex. 

79.  Applying  these  processes  to  the  general  linear  equation  of 

the  second  order,  y2  +  Py1  +  Qy  =  R,     (1) 
of  which  the  complementary  function  au+bv  is  supposed  known,- 
a  and  b  being  arbitrary  constants  and  u  and  v  known  functions  of  xr 

we  assume  that  y=uA+vB,      (2) 

giving  y1=ulA+v1B,       (3) 

provided  that  uA1+vB1=0   (4) 
Differentiating  (3), 

y2  =  u2A  +  v2B  +  u1A1+vlB1   (5) 
Substitute  for  y2,  yl  and  y  in  (1). 
The  terms  involving  A  will  be  A(u2  +  Pu1  +  Qu),  i.e.  zero,  as  by 

hypothesis,  Wg  +  p%  +  qu  =  0. 
Similarly  the  terms  involving  B  vanish,  and  (1)  reduces  to 

uxAx  +v1Bl  =R   (6) 
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Solving  (4)  and  (6),   — *  =  A  =   ^_ V         -U      VUX-UVX* 

We  then  get  A  and  B  by  integration,  say 

A=f(x)+a, 
B=F(x)+b, 

where  /  (x)  and  F  (x)  are  known  functions  of  x,  and  a  and  6  are 
arbitrary  constants. 

Substituting  in  (2),  we  get  finally 

y  =  uf(x)  +  vF  (x)  +  au  +  bv. 

*  80.  This  method  can  be  extended  to  linear  equations  of  any 
order.    For  that  of  the  third  order, 

y3  +  Py2  +  Qy1  +  Ry=S,   (1) 

of  which  the  complementary  function  y  =  au  +bv+cw  is  supposed 
known,  the  student  will  easily  obtain  the  equations 

y  =  uA+vB+wC,      (2) 

y1=u1A  +v1B+w1C,      (3) 

provided  that  0=uA1+vB1+ivC1;     (4) 

hence  y2  =  u2A+v2B +w2C,       (5) 

provided  that  0=u1A1+v1B1+w1C1 ;      (6) 

then  yz  -  u3A  +  v3B  +  w3C 

+  u2A1+v2B1+w2C1;      (7) 

by  substitution  in(l),    S=v2A1+v2B1+w2C1   (8) 

Aly  Bly  and  Cx  are  then  found  from  the  three  equations  (4),  (6) 
and  (8). 

Examples  for  solution. 

(1)  2/2  +  V  =  cosec  x.  (2)  y2  +  iy  =  4  tan  2z. 

<3)  y*-y=rh' 
(4)  x2y2  +  xyx  -  y  =  x2ex,  given  the  complementary  function  ax  +  bx*1. 

(5)  y3-6ij2  +  nyi-6y  =  e2*. 

81.  Comparison  of  the  different  methods  for  solving  linear  equations. 

If  it  is  required  to  solve  a  linear  equation  of  the  second  order  and 
no  special  method  is  indicated,  it  is  generally  best  to  try  to  guess 
a  particular  integral  belonging  to  the  complementary  function  and 
proceed  as  in  Art.  76.  This  method  may  be  used  to  reduce  a  linear 

equation  of  the  nth  order  to  one  of  the  (n  -  l)th. 

*  To  be  omitted  on  a  first  reading. 
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The  method  of  factorisation  of  the  operator  gives  a  neat  solution 

in  a  few  cases,  but  these  are  usually  examples  specially  constructed 
for  this  purpose.    In  general  the  operator  cannot  be  factorised. 

The  method  of  variation  of  parameters  is  inferior  in  practical 
value  to  that  of  Art.  76,  as  it  requires  a  complete  knowledge  of  the 
complementary  function  instead  of  only  one  part  of  it.  Moreover, 

if  applied  to  equations  of  the  third  or  higher  order,  it  requires  too 
much  labour  to  solve  the  simultaneous  equations  for  Ax>  Bv  Cx,  etc., 
and  to  perform  the  integrations. 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  VII. 

(1)  2/^2  ~2/i2  + 2/i  =  0.  <2)  xy2  +  xy12-y1  =  0. 

(3)  y»*r*y*-v  (4)  y„  +  «/„-2  =  8cos3z. 

(5)  (x2  log  x - x2)y2- xyt  +  y  =  0. 

(6)  (x2  +  2x  -l)y2-  (3x2  +  8x  -l)y1  +  (2x2  +  6x)y  =  0. 
(7)  Verify  that  cos  nx  and  sin  nx  are  integrating  factors  of 

y2  +  n2y=f{x). 
Hence  obtain  two  first  integrals  of 

y2  +  n2y  =  sec  nx, 
and  by  elimination  of  yx  deduce  the  complete  primitive. 

(8)  Show  that  the  linear  equation 

Ay  +  By1  +  Cy2  +  ...+Syn  =  T, 
where  A,  B,  C, ...  T  are  functions  of  x,  is  exact,  i.e.  derivable  imme- 

diately by  differentiation  from  an  equation  of  the  next  lower  order,  if 
the  successive  differential  coefficients  of  A,  B,  C, ...  satisfy  the  relation 

A-B1  +  C2-...+(-l)nSn  =  0. 

[N.B. — By  successive  integration  by  parts, 

]Syndx  =  Syn^1-S1yn_2  +  S2yn_3  +  ...+(-l)n-1Sn_1y  +  }(-l)nSnydx.] 
Verify  that  this  condition  is  satisfied  by  the  following  equation,  and 

hence  solve  it : 

(2x2  +  3x)  y2  +  (6x  +  3)y1  +  2y  =  (x  +  l)ex. 

(9)  Verify  that  the  following  non-linear  equations  are  exact,  and 
solve  them:  (i)  yy2  +  yi2  =  0. 

(ii)  xyy2  +  xy12  +  tjy1  =  0. 

(10)  Show  that  the  substitution  y  =  ve    •>    IX  transforms 
y2  +  Py1+Qy  =  R, 

where  P,  Q,  and  R  are  functions  of  x,  into  the  Normal  Form 

v2  +  Iv  =  S, 
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where  I=Q-\PX-\P\ 

and  S  =  Re^Pdx. 
Put  into  its  Normal  Form,  and  hence  solve 

y2-ixy1  +  (4:X2-l)y=  - 3ex* sin  2x. 
(11)  Show  that  if  the  two  equations 

and  z2  +  pz1  +  qz  =  0 

reduce  to  the   same  Normal  Form,  they  may  be  transformed  into 
each  other  by  the  relation 

\[pdx  \\pdx 

i.e.  the  condition  of  equivalence  is  that  the  Invariant  I  should  be  the 
same. 

(12)  Show  that  the  equations 

x2y2  +  2(xz-x)y1  +  (l-2x2)y=0 

and  x2z2  +  2(x3  +  x)zl-{l-2x2)z=0 
have  the  same  invariant,  and  find  the  relation  that  transforms  one  into 

the  other.     Verify  by  actually  carrying  out  this  transformation. 

(13)  If  u  and  su  are  any  two  solutions  of 

v2  +  lv  =  0,    (1) 

prove  that  ^=_2^1,    (2) 
s1  u 

and  hence  that  ^-^(-2Y  =  2/   (3) 

From  (2)  show  that  if  s  is  any  solution  of  (3),  s^  and  ss^  are 
solutions  of  (1). 

[The  function  of  the  differential  coefficients  of  s  on  the  left-hand 
side  of  (3)  is  called  the  Schivarzian  Derivative  (after  H.  A.  Schwarz  of 
Berlin)  and  written  {s,  x}.  It  is  of  importance  in  the  theory  of  the 
Hypergeometric  Series.] 

(14)  Calculate  the  Invariant  /  of  the  equation 

x2y2  -  (x2  +  2x)yx  +  (x  +  2)y=Q. 

Taking  s  as  the  quotient  of  the  two  solutions  xex  and  x,  verify  that 

{s,x}  =  21, 

and  that  sx     and  ssf*  are  solutions  of  the  Normal  Form  of  the  original 
equation. 

(15)  If  u  and  v  are  two  solutions  of 

y2+Pyi+Qy=o, 
prove  that  uv2  -  vu2  +  P{uv1  -  vuj)  =  0, 

and  hence  that  uv1-vu1  —  ae   *      . 
Verify  this  for  the  equation  of  the  last  example. 
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(16)  Show  that  yyx  =  const,  is  a  first  integral  of  the  equation  formed 
by  omitting  the  last  term  of 

By  putting  yyx  =  C,  where  C  is  now  a  function  of  x  (in  fact,  varying 
the  parameter  C),  show  that  if  y  is  a  solution  of  the  full  equation,  then 

c[=-y2, 
and  hence  C2  =  const.  -  \y*, 

giving  finally  y2  =  a  sin  {x\J1  +  b). 
[This  method  applies  to  any  equation  of  the  form 

*■+*■/(*) +*(y)-o.] 
(17)  Solve  the  following  equations  by  changing  the  independent 

variable  : 
d2ti      Q'V 

(ii)  (l+*«)»g  +  2»(l+^+4y-a 
(18)  Transform  the  differential  equation 

j~2 cos  x + ~j~  sm  x  ~  %y cos3  X = ^  c°s5  £ 

into  one  having  z  as  independent  variable,  where 
z  =  sin  x, 

and  solve  the  equation.  [London.] 

(19)  Show  that  if  z  satisfies 

^  +  P-=0, 
dx2        dx 

by  changing  the  independent  variable  from  x  to  z,  we  shall  transform 

into  d4  +  Sy=T' 

Hence  solve      0  +  (l  -^)^  +  ix2ye-2x  =  4:(x2  +  x3)e-Zx. 



CHAPTER  VIII 

NUMERICAL  APPROXIMATIONS  TO  THE  SOLUTION  OF 

DIFFERENTIAL  EQUATIONS 

82.  The  student  will  have  noticed  that  the  methods  given  in  the 

preceding  chapters  for  obtaining  solutions  in  finite  form  only  apply 
to  certain  special  types  of  differential  equations.  If  an  equation 

does  not  belong  to  one  of  these  special  types,  we  have  to  use  approxi- 
mate methods.  The  graphical  method  of  Dr.  Brodetsky,  given  in 

Chapter  L,  gives  a  good  general  idea  of  the  nature  of  the  solutionr 
but  it  cannot  be  relied  upon  for  numerical  values. 

In  this  chapter  we  shall  first  give  Picard's  *  method  for  getting 
successive  algebraic  approximations.  By  putting  numbers  in  these, 
we  generally  get  excellent  numerical  results.  Unfortunately  the 
method  can  only  be  applied  to  a  limited  class  of  equations,  in  which 
the  successive  integrations  can  be  easily  performed. 

The  second  method,  which  is  entirely  numerical  and  of  much 

more  general  application,  is  due  to  Runge.f  With  proper  pre- 
cautions it  gives  good  results  in  most  cases,  although  occasionally 

it  may  involve  a  very  large  amount  of  arithmetical  calculation.  "We 
shall  treat  several  examples  by  both  methods  to  enable  their  merits 
to  be  compared. 

Variations  of  Runge's  method  have  been  given  by  Heun,  Kutta, 
and  the  present  writer. 

83.  Picard's  method  of  integrating  successive  approximations.      The 
differential  equation  dv 

*  E.  Picard,  Professor  at  the  University  of  Paris,  is  one  of  the  most  distinguished 
mathematicians  of  to-day.  He  is  well  known  for  his  researches  on  the  Theory  of 
Functions,  and  his  Cours  (Tanalyse  is  a  standard  text-book. 

t  C.  Runge,  Professor  at  the  University  of  Gottingen,  is  an  authority  on 
graphical  methods. 

94 



NUMERICAL  APPROXIMATIONS  9fr 

where  y  =6  when  x-a,  can  be  written 

*/  =  &  +  [  f(x,y)dx. 

For  a  first  approximation  we  replace  the  y  inf(x,  y)  by  b ;  for 
a  second  we  replace  it  by  the  first  approximation,  for  a  third  by  the 
second,  and  so  on. 

du 
Ex.  (i).  J?-  =  x  +  y2,  where  y=0  when  x=0. 

Here  y  =  I  (x  +  y2)  dx. Jo 

First  approximation.     Put  ?/=0  in  x  +  y2,  giving 

y=\  xdx  =  \x2. 

Jo Second  approximation.     Put  ?/  =  \x2  va.x  +  y2,  giving r 
y  =     (»  +  iz4)  (far  =  \x2  +  z\x5. Jo 

Third  approximation.     Put  i/  =  \x2  +  -^V^5  in  cc  +  «/2,  giving r 
1/  =     (a?  +  \&  +  -itx1  +  Thvx10)  dx Jo 

—  ir2  i     1  r5  i      1    y8  i        l      yll 
—  2X    ̂ W*'    +  TTRr,c    +TTTTD"X    > 

and  so  on  indefinitely. 

where  t/  =  l  and  z  =  £  when  cc=0. 

Here  ?/  =  l  +  l  2^    and    z  =  i+l  x3(y  +  z)dx. Jo  Jo 

First  approximation. 

y=*l  +  I  -^cfa;  =  l+£x, 

Jo"
 

z  =  \  +  [V(l  +|)  cfc^  +  fz4. Jo 

Second  approximation. 

y  =  l  +  [  (%  +  %xi)dx  =  l+±x  +  Ts1Tx5, 
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Third  approximation. 

y  - 1  +  f  (£ + f  x* + -As5  +  frx*)  dx Jo 

- 1  +  \x  +  ̂ z5  +  isVz6  +  Tfox9, 

z  =4  +  r  a»(4  +  \x  +  f z4  +  ̂ r5  +  -fox8)  dx Jo 

and  so  on. 

Ex.  (iii).  j^  =  x3(^-  +  y),  where  */  =  l  and  -j-=\  when  x=0. 

By  putting  j-~z,  we  reduce  this  to  Ex.  (ii). 

It  may  be  remarked  that  Picard's  method  converts  the  differential 
equation  into  an  equation  involving  integrals,  which  is  called  an  Integral 
Equation. 

Examples  for  solution. 

Find  the  third  approximation  in  the  following  cases.  For  examples 
(1)  and  (2)  obtain  also  the  exact  solution  by  the  usual  methods. 

\/  (1)  ~  =  2y  -  2x2  -  3,  where  y  =  2  when  x  =  0. CLOC 

(2)  -~  =  2--,  where  v  =  2  when  x  =  l. dx  x 

ft-"*-. 
where  y  =  2  and  z=0  when  x  =  0. 

(dy 

(4) 

dx~Z'
 

dz  a  . 
-1-=x2z  +  x*y, 

dx  9 where  y  =  5  and  2  =  1  when  x=0. 

(5)      y  =  xzJ-+tfy    where  y  =  5  and  /  =  1  when  x=0. v  '  dx2        dx       *  *  dx 

84.  Determination  of  numerical  values  from  these  approximations. 

Suppose  that  in  Ex.  (i)  of  the  last  article  we  desire  the  value  of  y, 

correct  to  seven  places  of  decimals,  when  x  =0-3. 

Substituting  x  =0-3,  we  get  \  (0-3)2  =0-045  from  the  first  approxi- 
mation. 

The  second  adds       ̂ (0-3)5  =0-0001215, 

while  the  third  adds    ̂ (O^)8  +ttVtf(0-3)u  =0-00000041 ...  . 
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Noticing  the  rapid  way  in  which  these  successive  increments 

decrease,  we  conclude  that  the  next  one  will  not  affect  the  first 

seven  decimal  places,  so  the  required  value  is  0-0451219...  . 
Of  course  for  larger  values  of  x  we  should  have  to  take  more 

than  three  approximations  to  get  the  result  to  the  required  degree 
of  accuracy. 

We  shall  prove  in  Chap.  X.  that  under  certain  conditions  the 

approximations  obtained  really  do  tend  to  a  limit,  and  that  this  limit 
gives  the  solution.    This  is  called  an  Existence  Theorem. 

Example  for  solution. 

(i)  Show  that  in  Ex.  (ii)  of  Art.  83,  x  =  0-5  gives  y  =  1-252...  and 
2=0-526...  ,  while  z=0-2  gives  y  =  1-100025...  and  2  =  0-500632...  . 

85.  Numerical  approximation  direct  from  the  differential  equation. 

The  method  of  integrating  successive  approximations  breaks  down 
if,  as  is  often  the  case,  the  integrations  are  impracticable.  But 
there  are  other  methods  which  can  always  be  applied.  Consider 
the  problem  geometrically.     The  differential  equation 

dy 

dx 

=/fo  y) 

determines  a  family  of  curves  (the  "  characteristics  ")  which  do  not 
intersect  each  other  and  of  which  one  passes  through  every  point 

Fig.  23. 

in  the  plane.*     Given  a  point  P  (a,  b),  we  know  that  the  gradient 
of  the  characteristic  through  P  is  f  (a,  b),  and  we  want  to  determine 

*  This  is  on  the  assumption  that  f(x,  y)  has  a  perfectly  definite  value  for  every 
point  in  the  plane.  If,  however,  f(x,  y)  becomes  indeterminate  for  one  or  more 
points,  these  points  are  called  singular  points  of  the  equation,  and  the  behaviour 
of  the  characteristics  near  such  points  calls  for  special  investigation.     See  Art.  10. 
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the  y  =NQ  of  any  other  point  on  the  same  characteristic,  given  that 
x  =  ON  =  a  +  h,  say.  A  first  approximation  is  given  by  taking  the 
tangent  PR  instead  of  the  characteristic  PQ,  i.e.  taking 

y  =2VX  +LR=NL+PL  tan  /_RPL  =  b+hf{a,  b)  =b  +  hf0,  say. 

But  unless  h  is  very  small  indeed,  the  error  RQ  is  far  from 

negligible. 
A  more  reasonable  approximation  is  to  take  the  chord  PQ  as 

parallel  to  the  tangent  to  the  characteristic  through  S,  the  middle 

point  of  PR. 
Since  <#  is  (a  +  \h,  b  +  %hf0),  this  gives 

y  =NL  +LQ=NL  +  PL  tan  /_QPL  =b+hf{a  +  \h,  b  +ffi0). 

This  simple  formula  gives  good  results  in  some  cases,  as  will  be 
seen  from  the  following  examples  : 

Ex.  (i)  -^-  =  x  +  y2;  given  that  y=0  when  x  =  0,  required  y  when 
a;  =  0-3.        dx 
Here  a  =  6  =  0,     A  =  0-3,    f(x,y)=x  +  y*. 
Therefore 

/o=/(a,6)=0,     a  +  £A  =  0-15,     6  +  P/0  =  0, 

giving        b  +  hf{a  +  \h,  6  +  ̂ /0)=0  +  0-3  x/(0-15,  0)  =0-045. 
The  value  found  in  Art.  84  was  0-0451219...  ,  so  the  error  is 

0-00012...  ,  about  J  per  cent. 

Ex.  (ii).  -j-  =  2  -  -  ;  given  that  y  —  2  when  x  =  l,  find  y  when  x  =  1  -2. 

Here  o-l,    6  =  2,    A=0-2,    /0=2-f=0. 

Therefore     b  +  hf(a  +  $h,  6  +  ̂/0)  =  2  +  0-2  x/(M,  2) 

=  2+0-2  x  (2--^-)  =2-036.... 

Now  the  differential  equation  is  easily  integrable,  giving  y  =  x  +  -, 

so  when  a?  =  1-2  the  value  of  y  is  2-033...  .  The  error  is  0-003... ,  which 
is  rather  large  compared  with  the  increment  of  y,  namely  0-036...  . 

Ex.  (iii).  -g  =  «=/(&,  y,  z),  say, 

-^  =  x3(y  +  z)~g(x,  y,  2),  say; 

given  that  y  =  \  and  2  =  0-5  when  x  =  0,  find  y  and  2  when  x  =  0-5. 
Here  a=0,  6  =  1,  c (the  initial  value  of  2)  =0-5,  A=0-5. 

Hence        /0=/(0,  1,  0-5)  =0-5  ;    g0=g<0,  1,  0-5)=0. 
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By  an  obvious  extension  of  the  method  for  two  variables,  we  take 
=  b  +  hf{a  +  \h,  b  +  \hf0,  c  +  ̂0)  =  l+0-5x/(0-25,  1-125,  0-5)  =  l-2500, and  z  =  c  +  hg(a  +  $h,  b  +  Wo>  c  +  ihgQ) 

=0-5  +0-5x0(0-25,  1-125,  0-5)  =0-5127. 
The  accurate  values,  found  as  in  Art.  84,  are 

y  =  1-252...    and    2=0-526.... 
Thus  we  have  obtained  a  fairly  good  result  for  y,  but  a  verv  bad one  for  z.  

J 

k  TheilunJcer*aiuty  ab°ut  the  degree  of  accuracy  of  the  result  deprives the  method  of  most  of  its  value.  However,  it  forms  an  introduction  to 

articb°re  e  meth°d  0f  RunSe>  t0  be  explained  in  the  next 

Examples  for  solution. 

.-.  dy  i 

{)  dx  =  {x  ~y)  ~1;  ̂ ven  that  y  =  4  when  x  =  2-3,  obtain  the  value 

y  =  4-122  when  z  =  2-7.     [Runge's  method  gives  4-118.] in\  dy     1     $ 
{)  di^lO™  -1+lo&(x  +  y)}'>  given  that  y  =  2  when  x=-l,  obtain 

;he  value  y  =  2-194  when  a-1.     [Runge's  method  gives  2-192.] ti\  dy        y    • 
{)  ti '<  x'  glventhat2/  =  2whenz  =  l,  obtain  the  valuey  =  2-076 

X  ion2:.  .^ show  that  y=lx2+i> so  that  when  -1*  V  ™ 
86.  Runge's  method.    Suppose  that  the  function  of  y  defined  *  by 

~dx  ~$  ̂'  $'  y=b  when  x = a> 
3  denoted  by  y=F(x). 

If  this  can  be  expanded  by  Taylor's  theorem, 

F(a  +  h)  =F{a)  +  hF{a)  +^F"(a)  +~F'"(a)  + ...  . 

Now  F\x)=%=f{x,y)=f,^y. 

We  shall  now  take  the  total  differential  coefficient  with  respect 
>  x  (that  is,  taking  the  y  in/  to  vary  in  consequence  of  the  variation 
i  x).  ̂   Let  us  denote  partial  differential  coefficients  by 

p-f?,    ,-§?,     rJ-f      s-^f       t-d2f- 
to'    *    dy'  dx*'     S~dxdy'     t    dtf> 

id  their  values  when  x  =  a  and  y  =b  by  Po,  qQ,  etc. 

io^IinodZ.Tt'  ThlCh  th«  diffe^«al  equation  and  the  initial  con- 
■«♦  «?lu  7i  *  1  •  f  functl0n  are  discussed  in  Chap.  X.  The  graphical  treat 
nt  of  the  last  article  assumes  that  these  conditions  are  satisfied  graptU°al  treat" 
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Similarly,      *»<(*)  =  (|+|  J)  (,+,,) 
=  r+^+/s+/(s+?2+/|F). 

Thus 

JP(a+A)-.F(a) 

=  fc/0  +  JA8(p0  +/o?o)  +#"(*•  +2/>o  +/o%  +M>  +/o?o2)  +  •••  •  (1) 
The  first  term  represents  the  first  approximation  mentioned  and 

rejected  in  Art.  85. 
The  second  approximation  of  Art.  85,  i.e. 

y-b=hf{a+\h,b  +  \hfQ)  =  k1}  say, 
may  now  be  expanded  and  compared  with  (1). 

Now,  by  Taylor's  theorem  for  two  independent  variables, 

f(a+lh,b+±hf0)  x 

=/o  + 1%  +  Wtfo  +  2!  (^2/"o  +  hh2Uo  +  i  Wo)  +  •  •  •  > 

giving        A;1=A/0+^2(^o+/o?o)+^3K+2/oSo4o)  +   (2) 
It  is  obvious  that  Jcx  is  at  fault  in  the  coefficient  of  h3. 

Our  next  step  is  suggested  by  the  usual  methods  *  for  the 
numerical  integration  of  the  simpler  differential  equation 

!=/(*>■      ■ 
Our  second  approximation  in  this  case  reduces  to  the  Trapezoidal 

Rule  y-b=hf{a+\h). 

Now  the  next  approximation  discussed  is  generally  Simpson's 
Rule,  which  may  be  written 

y-&-i*{/(a)+4/(a+#)+/(a  +  *)}. 
If  we  expand  the  corresponding  formula  in  two  variables,  namely 

\Hh  +  tfiP+\K  b+lhf^+fia+h,  b  +  hf0)}, 
we  easily  obtain 

¥o  +  ¥i2(Po+foqo)+hW(ro  +  2foSo  +  t0)  +  ---,      (3) 
which  is  a  better  approximation  than  kv  but  even  now  has  not  the 

coefficient  of  h3  quite  in  agreement  with  (1). 
To  obtain  the  extra  terms  in  h3,  Runge  f  replaces 

hf(a+h,b+hf0) 

*  See  the  text- books  on  Calculus  by  Gibson  or  Lamb, 

f  Mathematische  Annalen,  Vol.  XL VI.  pp.  167-178. 
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by  V"  =  hf(a  +h,b+  V),  where  k"  =  hf(a  +  h,b+  hf0).  The  modified 

formula  maybe  briefly  written  ̂ {k'  +ikl+k'"},  where  k'  =hf0,  or 
f kx  +  ̂k2  =  kx  + 1 (k2  - kj),  where  k2  =  \(k'  +k'"). 

vThe  student  will  easily  verify  that  the  expansion  of  Runge's 
formula  agrees  with  the  right-hand  side  of  (1)  as  far  as  the  terms 
in  h,  h2,  and  h3  are  concerned. 

Of  course  this  method  will  give  bad  results  if  the  series  (1)  con- 
verges slowly. 

If  yo  >  1  numerically,  we  rewrite  our  equation 

i=KhrF(x'y)-m' and  now  F0<  1  numerically,  and  we  take  y  as  the  independent 
variable. 

87.  Method  of  solving  examples  by  Runge's  rule.  To  avoid 
confusion,  the  calculations  should  be  formed  in  some  definite  order, 
such  as  the  following  : 

Calculate  successively    k' =hf0, 

k"=hf{a  +  h,b+k'), 
k"'=hf(a  +  h,b+k"), 

k^hfia  +  ih,  6+P'), 
k2  =  2\k  +k    ), 

and  finally  k  =  k1+^(k2-k1). 

Moreover,  as  kx  is  itself  an  approximation  to  the  value  required, 

it  is  clear  that  if  the  difference  between  k  and  kv  namely  I  (k2  -  kx), 
is  small  compared  with  k±  and  k,  the  error  in  k  is  likely  to  be  even 
smaller. dy 

Ex.  (i).  j-=x  
+  y2;   given  

that  y=0  when  
x  =  0,  find  y  when  

x  =  0-3. 

Here        a  =  0,     6  =  0,     A  =  0-3,    f(x,y)=x  +  y2,    /0  =  0; 
tf-Vo-0; 

k"  =  hf{a  +  h,  &  +  A/)=0-3x/(0-3,  0)=0-3x0-3  =0-0900; 
k'"  =  hf(a  +  h,  b  +  k")  =0-3  x/(0-3,  0-09)  =0-3  x  (0-3  +  0-0081)  =0-0924  ; 

kx-hf{a  +  \h,  6  +  P')  =0-3  x/(0-15,0)  =0-3x0-15  =0-0450; 
k2  =  \(k'  +  k'")  =  \x  0-0924  =0-0462; 

and 

k  =  kx  +£(&2-fc1)  =0-0450  +  0-0004  =0-0454. 

As  the  difference  between  k  =  0-0454  and  kx  =  0-0450  is  fairly  small 
compared  with  either,  it  is  highly  probable  that  the  error  in  k  is  less 
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than  this  difference  0-0004.     That  is  to  say,  we  conclude  that  the  value 
(  is  0-045,  correct  to  the  third  place  of  decimals. 

We  can  test  this  conclusion  by  comparing  the  result  obtained  in 

Art.  84,  viz.  0-0451219...  . 

fjbti        II  —  nt* 

Ex.  (ii).  j-        ;   given  that  y  =  \  when  sc  =  0,  find  y  when  x  =  l. 
(too    y  *t"  x 

This  is  an  example  given  in  Eunge's  original  paper.     Divide  the 
range  into  three  parts,  0  to  0-2,  0-2  to  0-5,  0-5  to  1.     We  take  a  small 
increment  for  the  first  step  because  /  (x,  y)  is  largest  at  the  beginning. 

First  step.  a  =  0,    6  =  1,     /*  =  0-2,    /0  =  1  ; 

k'  =  hf0  =0-200 

k"  =  hf(a  +  h,  b  +  k')  =0-2  xf  (0-2,  1-2)      =0-143 

k'"  =  hf{a  +  h,  b  +  k")=0-2xf(0-2,  1-143)  =0-140 

kx  =  hf(a  +  \h,b  +  \k')=0-Zxf{0-\, 1-1)   =0-167 

k2  =  ̂{k'  +  k'")  =  ̂ x  0-340  =0-170 

and  k^^  +  H^-kj)  =0-167  +0-001  =0-168 

giving  i/  =  l-168  when  z  =  0-2. 
Second  step. 

a  =  0-2,     6  =  1-168,    7*=0-3,    /0=/(0-2,  1-168)  =0-708. 

Proceeding  as  before  we  get  i1  =  0-170,  &2  =  0-173  and  so  £  =  0-171, 

giving  y  =  1-168  +0-171  =  1-339  when  x  =  0-5. 

Third  step.  a  =  0-5,    6  =  1-339,    7j  =  0-5. 

We  find  kt  =  k2  =  k  =  0-160,  giving  i/  =  l-499  when  x  =  l. 
Considering  the  k  and  kv  the  error  in  this  result  should  be  less  than 

0-001  on  each  of  the  first  and  second  steps  and  negligible  (to  3  decimal 

places)  on  the  third,  that  is,  less  than  0-002  altogether. 
As  a  matter  of  fact,  the  true  value  of  y  is  between  1  -498  and  1  -499, 

so  the  error  is  less  than  0-001.  This  value  of  y  is  found  by  integrating 
the  equation,  leading  to 

7T  -  2  tan-1  ̂   =  loge(x2  +  y2). 

Examples  for  solution. 

Give  numerical  results  to  the  following  examples  to  as  many  places 
of  decimals  as  are  likely  to  be  accurate  : 

(1)  y  =  77;{y  -1  +l°ge(3  +  2/)}  ;  given  that  y  =  2  when  x= -1,  find 

y  when  x  =  l,  taking  h  =  2  (as /is  very  small).  , 

(2)  Obtain  a  closer  approximation  to  the  preceding  question  by 
taking  two  steps. 

(3)  ~  =  (x2-y)  -1  ;  given  that  y  =  i  when  x  =  2  -3,  find  y  when 

x  =  2  -7  (a)  in  one  step,  (6)  in  two  steps. 
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dtf  V 
(4)  Show  that  if  -^=2--  and  y  =  2  when  as—1,  then  y  =  x  +  -. dx  X  X 

Hence  find  the  errors  in  the  result  given  by  Runge's  method,  taking 
(a)  ̂ =0-4,  (b)  h=0-2,  (c)  h=0-l  (a  single  step  in  each  case),  and  compare 
these  errors  with  their  estimated  upper  limits. 

(5)  If  E(h)  is  the  error  of  the  result  of  solving  a  differential  equation 

of  the  first  order  by  Runge's  method,  prove  that 

Lt    EW  _  I 

h.+o  E{nh)     n*' Hence  show  that  the  error  in  a  two-step  solution  should  be  about 
■§■  of  that  given  by  one  step ;  that  is  to  say,  we  get  the  answer  correct 
to  an  extra  place  of  decimals  (roughly)  by  doubling  the  number  of  steps. 

88.  Extension  *  to  simultaneous  equations.  The  method  is  easily 
extended  to  simultaneous  equations.  As  the  proof  is  very  similar 

to  the  work  in  Art.  86,  though  rather  lengthy,  we  shall  merely  give 
an  example.  This  example  and  those  given  for  solution  are  taken, 

with  slight  modifications,  from  Runge's  paper. 

Ex.  £  =  22-|=/(x,  y,  z),  say, 
dz  y  . 

given  that  y= 0-2027  and  2  =  1-0202  when  x  =  0-2,  find  y  and  z  when 
z  =  0-4. 

Here 

o  =  0-2,    6=0-2027,    c  =  1-0202,    /„=/ (0-2,  0-2027,  1-0202)  =  1-027, 
a0  =  0-2070,     A  =  0-2; 

k' =  hf 0  =  0-2x  1-027  =0-2054 

Z'  =  ̂ 0  =  0-2x  0-2070  =0-0414 
k"  =  hf(a  +  h,  b  +  k',  c  +  V)  =0-2  x/(0-4,  0-4081,  1-0616)       =0-2206 
l"  =  hg(a  +  h,  b  +  k',  c  +  l')  =0-2  xo(0-4,  0-4081,  1-0616)       =0-0894 

k'"  =  hf(a  +  h,  b  +  k",  c  +  O=0-2x/(0-4,  0-4233,  1-1096)     =0-2322 
l'"  =  hg(a  +  h,  b  +  k",  c  +  l")  =0-2  xo(0-4,  0-4233,  1-1096)     =0-0934 

kj_  =  hf(a  +  \h,  b  +  p',  c  +  \V)  =0-2  x/(0-3,  0-3054,  1  -0409)  =0-2128 

l^hfia  +  lh,  b  +  \lc',  c  +  \l')  =0-2xo(0-3,  0-3054,  1-0409)  =0-0641 
k2  =  $(k'  +  k'")  =0-2188 

12  =  \{V  +  V")  =0-0674 
k  =  k1  +  ̂ (k2-k1)=  0-2128  +  0-0020  =0-2148 
l  =  ̂   +  l(l2  -Ji)  =0-0641  +0-0011  =0-0652 

giving  y  =  0-2027  +0-21 48  =  0-41 75 
and  2  =  1  -0202  +  0  -0652  =  1  -0854, 
probably  correct  to  the  third  place  of  decimals. 

*The  rest  of  this  chapter  may  be  omitted  on  a  first  reading. 
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Examples  for  solution. 

(1)  With  the  equation  of  Art.  88,  show  that  if  y =04175  and 
2  =  1-0854  when  x =0-4,  then  y =0-6614  and  2  =  1-2145  (probably  correct 
to  the  third  place  of  decimals)  when  x  =  0-6. 

...   dw        _      V(l-w2)      dr  w  .  , 
(2)  —  =-2«  +  -^   '-;    j-^—^z   rx  ;    given  that  w =0-7500 dz  r  dz     v(l  ~w  ) 

and  r=0-6  when  2  =  1-2145,  obtain  the  values  w =0-5163  and  r =0-7348 
when  2  (which  is  to  be  taken  as  the  independent  variable)  =  1-3745. 
Show  that  the  value  of  r  is  probably  correct  to  four  decimal  places,  but 
that  the  third  place  in  the  value  of  iv  may  be  in  error. 

(3)  By  putting  w  =  cos  <f>  in  the  last  example  and  t/  =  sin  <p,  x  =  r  in 
the  example  of  Art.  88,  obtain  in  each  case  the  equations 

dz  _       sin  d>  d<h 
^-  =  tanrf>;     22  =   -  +  cos<b-r-, dr  r  r  T  dr 

which  give  the  form  of  a  drop  of  water  resting  on  a  horizontal  plane. 

89.  Methods*  of  Heun  and  Kutta.  These  methods  are  very 
similar  to  those  of  Runge,  so  we  shall  state  them  very  briefly.    The 

problem  is :  given  that  -~  =f(x,  y)  and  y=b  when  x  =  a,  to  find 

the  increment  h  of  y  when  the  increment  of  x  is  h. 
Heun  calculates  successively k'=hf(a,b), 

k"=hf(a+ih,b+lk'), Jc'"=hf(a  +  %h,b+ik"), 
and  then  takes  l(k'  +SJc'")  as  the  approximate  value  of  h. Kutta  calculates  successively, k'=hf(a,b), 

Jc"=hf{a+ih,b+ik'), k'"=hf(a+lh,b+k"  
-\k'), 

k""=hf(a+h,b+k"'-k"+k'), and  then  takes  |(&'  +3k"  +3k'"  +k"")  as  the  approximate  value oik. 

The  approximations  can  be  verified  by  expansion  in  a  Taylor's 
series,  as  in  Runge's  case. 

Example  for  solution. 

n/'U         <u     nr 

Given  that  -f-=-   and  y  —  \  when  x=0,  find  the  value  of  y  (to  8 

significant  figures)  when  x  =  1-2  by  the  methods  of  Runge,  Heun,  and 
Kutta,  and  compare  them  with  the  accurate  value  1-1678417.  [From 
Kutta 's  paper.  ] 

*  Zeitschrift  fur  Mathematik  und  Physik,  Vols.  45  and  46. 
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90.  Another  method,  with  limits  for  the  error.  The  present  writer 

has  found  *  four  formulae  which  give  four  numbers,  between  the 
greatest  and  least  of  which  the  required  increment  of  y  must  lie. 
A  new  approximate  formula  can  be  derived  from  these.  When 

applied  to  Runge's  example,  this  new  formula  gives  more  accurate 
results  than  any  previous  method. 

The  method  is  an  extension  of  the  following  well-known  results 
concerning  definite  integrals. 

91.  Limits  between  which  the  value  of  a  definite  integral  lies.    Let 

F(x)  be  a  function  which,  together  with  its  first  and  second 
differential  coefficients,  is  continuous  (and  therefore  finite)  between 

x=a  and  x=a  +  h.  Let  F"{x)  be  of  constant  sign  in  the  interval. 
In  the  figure  this  sign  is  taken  as  positive,  making  the  curve  concave 
upwards.  LP,  MQ,  NR  are  parallel  to  the  axis  of  y,  M  is  the 

middle  point  of  LN,  and  SQT  is  the  tangent  at  Q.    OL=a,  LN  =  h. 

3 

R 
s ~-^^Q 

T 

M 
FIG.  24. 

Then  the  area  PLNR  lies  between  that  of  the  trapezium  SLNT 

and  the  sum  of  the  areas  of  the  trapezia  PLMQ,  QMNR. 

That 
Ca+k 

is,         F(x)di J  a ix  lies  between 

hF{a  +  \h)=A,  say, 

and  lh{F(a)+2F(a  +  lh)+F(a+h)}=B,  say. 

In  the  figure  F"(x)  is  positive  and  A  is  the  lower  limit,  B  the 
upper.  If  F"(x)  were  negative,  A  would  be  the  upper  limit  and  B 
the  lower. 

*  Phil.  Mag.,  June  1919.     Most  of  this  paper  is  reproduced  here. 
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As  an  approximation  to  the  value  of  the  integral  it  is  best  to 
take,  not  the  arithmetic  mean  of  A  and  B,  but  %B+^A,  which  is 

exact  when  PQR  is  an  arc  of  a  parabola  with  its  axis  parallel  to  the 
axis  of  x.    It  is  also  exact  for  the  more  general  case  when 

F  (x)  =  a  +  bx  +  ex2  +  ex3, 
as  is  proved  in  most  treatises  on  the  Calculus  in  their  discussion  of 

Simpson's  Rule. 
92.  Extension  of  preceding  results  to  functions  denned  by  differential 

equations.    Consider  the  function  denned  by 

^  =»/(*»  y)>  y=b  wnen  * = a ; 

where  f(x,  y)  is  subject  to  the  following  limitations  in  the  range  of 

values  a  to  a  +  h  for  x  and  6  -  h  to  b  +  h  for  y.  It  will  be  seen  from 
what  follows  below  that  the  increment  of  y  is  numerically  less  than  h, 

so  that  all  values  of  y  will  fall  in  the  above  range.  The  limitations 
are  : 

(1)  f(x,  y)  is  finite  and  continuous,  as  are  also  its  first  and  second 

partial  differential  coefficients. 

(2)  It  never  numerically  exceeds  unity.  If  this  condition  is  not 
satisfied,  we  can  generally  get  a  new  equation  in  which  it  is  satisfied 

by  taking  y  instead  of  x  as  the  independent  variable. 

(3)  Neither  cPy/dx3  nor  df/dy  changes  sign. 

"  Let  m  and  M  be  any  two  numbers,  such  that 

Then  if  the  values  of  y  when  x  is  a  +\h  and  a  +  h  are  denoted  by 

b  +j  and  b  +  h  respectively,* 
-^h^lmh<j<^Mh^ih,   (1) 

and  -&=    mh<k<Mh^h   (2) 

We  shall  now  apply  the  formulae  of  the  last  article,  taking  y  to 
be  the  same  function  as  that  defined  by 

Ca+x 

y  =  b  +  \      F(x)dx, 

J  a 

Ca+h 

so  that  &=|      F(x)dx. 

We  have  to  express  the  formulae  in  terms  of  /  instead  of  F. 

Now,  F(a)  =the  value  of  dy/dx  when  x  =  a, 

so  that  F(a)=f(a,  b). 

*The  following  inequalities  hold  only  if  h  is  positive.     If  h  is  negative,  they 
must  be  modified,  but  the  final  result  stated  at  the  end  of  this  article  is  still  true. 
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Similarly,  F(a  +  \h)  =f(a  +  \h,  b  +j), 

and  F(a  +  h)=f(a+h,  b  +  k). 

Now,  if  df/dy  is  positive,  so  that/ increases  with  y,  the  inequalities 
<1)  and  (2)  lead  to 

f{a+\h,  b+\mh)<f(a  +  \h,  b+j)<f(a+\h,  b+\Mh),   (3) 

and     f(a+h,b+mh)<f(a  +  h,b+k)<f(a  +  h,b+Mh);    (4) 

while  if  df/dy  is  negative, 

/(a  +  \h,  b  +  \mh)  >f(a  +  %h,  b  +j)>f(a  +  \h,  b  +  \Mh),    ... (5) 

and     f(a+h,b+mh)>f(a+h,b+k)>f(a  +  h,b+Mh)   (6) 

Thus  if  F"  (x)  —  dPy/dx3  is  positive  and  df/dy  is  also  positive,  the 
result  of  Art.  91, 

A<k<B, 

may  be  replaced  by  p<k<Q,   (7) 

where  p  =  hf(a  +  \h,  b  +  \mh) 

and      Q  =  \h{f{a,  b)  +  2f(a  +  ±h,b+  \Mh)  +f{a  +  h,b+Mh)}; 

while  if  F"  (x)  is  positive,  and  df/dy  is  negative, 
P<k<q,    (8) 

where  P  =  hf(a  +  \h,  b  +  \Mh) 

and        q  =  \h{f{a,  b)  +  2f(a  +  hh,  b  +  ̂mh)  +f(a  +  h,  b+  mh)}. 

Similarly,  if  F"  (x)  and  df/dy  are  both  negative, 
p>k>Q,     (9) 

while  if  F"  {x)  is  negative  and  df/dy  positive, 
P>k>q   (10) 

These  results  may  be  summed  up  by  saying  that  in  every  case 
{subject  to  the  limitations  on/ stated  at  the  beginning  of  this  article) 
k  lies  between  the  greatest  and  least  of  the  four  numbers  p,  P,  q,  and  Q. 

As  an  approximate  formula  we  use  k  =  %B+^A,  replacing  B  by 
Q  or  q,  and  A  by  p  or  P. 

93.  Application  to  a  numerical  example.  Consider  the  example 
selected  by  Runge  and  Kutta  to  illustrate  their  methods, 

-t~=-   ;    w  =  lwhena;=0. 
ax    y  +  x      a 

It  is  required  to  find  the  increment  k  of  y  when  x  increases  by 

0-2.  Here  f(x,  y)=(y  -x)/(y  +x).  This  function  satisfies  the  con- 
ditions laid  down  in  the  last  article.* 

WetakeM  =  l,  m  =  (l-0-2)/(l-2+0-2)=4/7. 

*  As  f  (x,  y)  is  positive,  y  lies  between  1  and  1-2.     When  finding  M  and  m  we 
always  take  the  smallest  range  for  y  that  we  can  find 
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Then  p  =0-1654321, 
P  =0-1666667, 

9=0-1674987, 
£=0-1690476. 

Thus  h  lies  between  p  and  Q.  Errors. 

|Q  +  *p  =0-1678424,  00000007 

Kutta's  value  0-1678449,  0-0000032 

Kunge's  value  0-1678487,  0-0000070 
Heun's  value  0-1680250,  0-0001833 

The  second,  third,  and  fourth  of  these  were  calculated  by  Kutta. 

Now  this  particular  example  admits  of  integration  in  finite  terms, 

giving 

log  {x2  +y2)-2  tan-1  (x/y)  =0. 
Hence  we  may  find  the  accurate  value  of  k. 

Accurate  value  =0-1678417. 

Thus  in  this  example  our  result  is  the  nearest  to  the  accurate 
value,  the  errors  being  as  stated  above. 

We  may  also  test  the  method  by  taking  a  larger  interval  h  =  \. 
Of  course  a  more  accurate  way  of  obtaining  the  result  would  be  to 

take  several  steps,  say  ̂ =0-2,  0-3,  and  finally  0-5,  as  Runge  does. 
Still,  it  is  interesting  to  see  how  far  wrong  the  results  come  for 

the  larger  interval. 

We  take  M  =  1,     m  =  (l -l)/(2 +1)  =0. 

Then  iQ+iP  =0-50000. 

True  value  =0-49828,  Errors. 

Kutta's  value  =0-49914,  0-00086 
Our  value  =0-50000,  0-00172 

Heun's  value  =0-51613,  0-01785 

Runge's  value  =0-52381,  0-02553 

This  time  Kutta's  value  is  the  nearest,  and  ours  is  second. 



CHAPTER   IX 

SOLUTION  IN  SERIES.    METHOD  OF  FROBENIUS 

94.  In  Chapter  VII.  we  obtained  the  solution  of  several  equations 

of  the  form  d2y     ndy    n      A 

where  P  and  Q  were  functions  of  x. 

In  every  case  the  solution  was  of  the  form 

y=af(x)+bF(x), 
where  a  and  b  were  arbitrary  constants. 

The  functions  f(x)  and  F(x)  were  generally  made  up  of  integral 
or  fractional  powers  of  x,  sines  and  cosines,  exponentials,  and 
logarithms,  such  as 

(1  +2x)ex,    sin x  +  x cos x,    x*+x    ,    x+\ogx,    e':. 
The  first  and  second  of  these  functions  can  be  expanded  by 

Maclaurin's  theorem  in  ascending  integral  powers  of  x  ;  the  others 
cannot,  though  the  last  can  be  expanded  in  terms  of  1/x. 

In  the  present  chapter,  following  F.  G.  Frobenius,*  of  Berlin,  we 
shall  assume  as  a  trial  solution 

y  =  x° (a0  +  axx  +  ag?  + ...  to  inf.), 

where  the  a's  are  constants. f 
The  index  c  will  be  determined  by  a  quadratic  equation  called 

the  Indicial  Equation.  The  roots  of  this  equation  may  be  equal, 
different  and  differing  by  an  integer,  or  different  and  differing  by  a 
quantity  not  an  integer.  These  cases  will  have  to  be  discussed 
separately. 

The  special  merit  of  the  form  of  trial  solution  used  by  Frobenius 
is  that  it  leads  at  once  to  another  form  of  solution,  involving  log  x, 
when  the  differential  equation  has  this  second  form  of  solution. 

*  Crelle,  Vol.  LXXVL,  1873,  pp.  214-224. 
t  In  this  chapter  suffixes  will  not  be  used  to  denote  differentiation. 
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1 

As  such  a  function  as  ex  cannot  be  expanded  in  ascending  powers 
of  x,  we  must  expect  the  method  to  fail  for  differential  equations 
having  solutions  of  this  nature.  A  method  will  be  pointed  out  by 
which  can  be  determined  at  once  which  equations  have  solutions  of 

Frobenius'  forms  (regular  integrals)  and  for  what  range  of  values 
of  x  these  solutions  will  be  convergent. 

The  object  of  the  present  chapter  is  to  indicate  how  to  deal 

with  examples.  The  formal  proofs  of  the  theorems  suggested  will 
be  given  in  the  next  chapter. 

Among  the  examples  will  be  found  the  important  equations  of 

Bess*l,*  Legendre,  and  Riccati.  A  sketch  is  also  given  of  the  Hyper- 
geometric  or  Gaussian  equation  and  its  twenty-four  solutions. 

95.  Case  I.  Roots  of  Indicial  Equation  unequal  and  differing  by  a 

quantity  not  an  integer.    Consider  the  equation 

v*+^&-d£-6*y=°   w 
Put  z  =  Xs (a0  +  axx  +  ag?  +  ...),  where  a0=l=0,  giving  f 

dz 

j-  =a0cxc-x  +  ax(c  +  l)x°  +  a2(c  +  2)x°+1  +  ... , 

d2z 

and       j^  =  a0c(c  -\)x°-*  -i-a^c  +  l)cxc~1  +a2(c  +2)(c  +  l)z?  +  ... . 

Substitute  in  (1),  and  equate  the  coefficients  of  the  successive 
powers  of  x  to  zero. 

The  lowest  power  of  x  is  a?-1.    Its  coefficient  equated  to  zero  gives 

a0{2c(c-l)-c}=0, 

i.e.    c(2c-3)=0,     :   (2) 
as  a0  =f=  0. 

*  Friedrich  Wilhelm  Bessel,  of  Minden  (1784-1846),  was  director  of  the  obser- 
vatory at  Konigsberg.     He  is  best  known  by  "  Bessel's  Functions." 

Adrian  Marie  Legendre,  of  Toulouse  (1752-1833),  is  best  known  by  his  "Zonal 
Harmonics"  or  "Legendre's  Coefficients."  He  also  did  a  great  deal  of  work  on 
Elliptic  Integrals  and  the  Theory  of  Numbers. 

Jacopo  Francesco,  Count  Riccati,  of  Venice  (1676-1754),  wrote  on  "  Riccati's 
Equation,"  and  also  on  the  possibility  of  lowering  the  order  of  a  given  differential 
equation. 

Karl  Friedrich  Gauss,  of  Brunswick  (1777-1856),  "the  Archimedes  of  the 
nineteenth  century,"  published  researches  on  an  extraordinarily  wide  range  of 
eubjects,  including  Theory  of  Numbers,  Determinants,  Infinite  Series,  Theory  of 
Errors,  Astronomy,  Geodesy,  and  Electricity  and  Magnetism. 

t  It  is  legitimate  to  differentiate  a  series  of  ascending  powers  of  x  term  by  term 
in  this  manner,  within  the  region  of  convergence.  See  Bromwich,  Infinite  Series, 
Art.  52. 
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(2)  is  called  the  Indicial  Equation. 

The  coefficient  of  af  equated  to  zero  gives 

o,{2(c  +  l)c-(c  +  l)}=0,    i.e.  Oj-0   .....(3) 

The  coefficient  of  x?+1  has  more  terms  in  it,  giving 

a2{2(c  +  2)(c  +  l)-(c+2)}+a0{c(c-l)-6}=0, 

i.e.    a2(c+2)(2c  +  l)+a0(c  +  2)(c-3)=0, 

i.e.    a2(2c  +  l)+a0(c-3)=0   (4) 

Similarly,  a3(2c+3)+a1(c-2)=0,    (5) 

a4(2c  +  5)+a2(c-l)=0,   .'.   (6) and  so  on. 

From  (3),  (5),  etc.,  0=a1=a3=a5  =  ...  =a2n+v 
From  (4),  (6),  etc., 

a2  _      c  -  3  a4  _      c  - 1 

a0        2c +  1'  a2_     2c +  5' 
Og  _      c  +  1  o2n  c  +  2w  -  5 

a4~     2c +9'  a2n_2        2c  +  4ri-3* 
But  from  (2),  c=0orf. 
Thus,  if  c=0, 

z=a\l  +3x2  +=£*  -y~x?  +Wr2?---  \  =au,  say, 

replacing  a0  by  a  ;  and  if  c=f, 

z=bx  {1+3a;2-87i6a;4  +  8.16.24a;6~8.16.24.32:r8-J 
=  bv  say,  replacing  a0  (which  is  arbitrary)  by  b  this  time. 

Thus  y=au  +  bv  is  a  solution  which  contains  two  arbitrary  con- 
stants, and  so  may  be  considered  the  complete  primitive. 

In  general,  if  the  Indicial  Equation  has  two  unequal  roots  a  and  (3 

differing  by  a  quantity  not  an  integer,  we  get  two  independent  solutions 
by  substituting  these  values  of  c  in  the  series  for  z. 

Examples  for  solution. 

(1>  <-.2+$+»-a     (2)  «-tt-*»3+a-)g+«i-a 

(4)  Bessel's  equation  of  order  n,  taking  2n  as  non-integral, 

x2^|  +  x^  +  (x2-«2)y  =  0. ax2       ax 
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96.  Convergence  of  the  series  obtained  in  the  last  article.    It  is 

proved  in  nearly  every  treatise  on  Higher  Algebra  or  Analysis  that 
the  infinite  series  %+w2  +  w3+  ...  is  convergent  if 

Lt 

ln+l 

<1. 

Now  in  the  series  we  obtained  un  —  a2n-2?f+2n~2>  *'•& 

"'n         u'2n-2 

_  c  +  2n-5    2    • ~~~2c  +  4n-3X' 

and  the  limit  when  w->oo  is  -  \xz,  independent  of  the  value  of  c. 
Hence  both  series  obtained  are  convergent  for  |  x  |  <  \/2. 

It  is  interesting  to  notice  that  if  the  differential  equation  is 
reduced  to  the  form 

giving  in  our  example  p(x)  =K — -s, 
  o^c 

and  q(x)=^—— , n  '     2  +  x2 

■p(x)  and  q(x)  are  expansible  in  power  series  which  are  convergent 
for  values  of  x  whose  modulus  |  x  |  <  \/2. 

That  is,  the  region  of  convergence  is  identical  in  this  example 

with  the  region  for  which  p  (x)  and  q  (x)  are  expansible  in  convergent 
power  series.  We  shall  show  in  Chap.  X.  that  this  theorem  is  true 

in  general. 

Examples  for  solution. 

Find  the  region  of  convergence  for  the  solutions  of  the  last  set  of 
examples.  Verify  in  each  case  that  the  region  of  convergence  is  identical 
with  the  region  for  which  p(x)  and  q(x)  are  expansible  in  convergent 
power  series. 

97.  Case  II.  Roots  of  Indicial  Equation  equal.  Consider  the 

equation 

<.-*-)g  +  <l-lte)g-*-0. 
Put  z=xc(a0  +  a1x+a2x2  + ...), 

and  after  substituting  in  the  differential  equation,  equate  coefficients 
of  successive  powers  of  x  to  zero  just  as  in  Art.  95. 
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We  get  aQ{c(c-l)+c}=0, 
i.e.     c2=0,     

a1{(c  +  l)c  +  c  +  l}-a0{c(c-l)+5c  +  4}=0, 

i.e.     flr1(c  +  l)a-o0(c+2)a=0,      

a2(c  +  2)2-a1(c+3)2=0,      

a3(c  +  3)2-a2(c  +  4)2=0,      

113 

and  so  on. 
Hence 

•(1) 

•(2) 

(3) 

•(4) 

•-^K^'-'C-SD is  a  solution  if  c=0. 

This  gives  only  one  series  instead  of  two. 
But  if  we  substitute  the  series  in  the  left-hand  side  of  the  dif- 

ferential equation  (without  putting  c=0),  we  get  the  single  term 
ffocV.  As  this  involves  the  square  of  c,  its  partial  differential 
coefficient  with  respect  to  c,  i.e.  2a0cx°  +  a^x*  log  x  will  also  vanish when  c=0. 

That  is, 

d 

dc 
d2  d 

(X  ~  X^  dx2  +  (1  "  5a;)  dx  ~  4J  ^  =  2a°cxC  +  ttocV  lo§  x- 

As.  the  differential  operators    are  commutative,  this  may  be written 

r  d2  d       "1  dz 

1{X  ~x2)dx2  +  {1~5x)d^-i]Fc=  2a°CxC  +  «<?*  lo8  x- 

Hence  ̂   is  a  second  solution  of  the  differential  equation,  if  c  is 
put  equal  to  zero  after  differentiation. 

Differentiating, 

lZ  =  z\o%X  +  a^[2(C-^).r-1    X+2(C+S).~2    x* 
■c+i\       -3       „         \ +  2 
c  +  i/  (c  +  iy 

Putting  c=0  and  aQ=a  and  b  respectively  in  the  two  series, 

z  -  a{l2  +  22x  +  32x2  +  W  +  52x4  +  ...}=  au,  say, dz 
dc and       .-=6wloga;-26{l  .2x+2  .3x2 +3  .  Ax*  +  ...}=bv,  say. 

The  complete  primitive  is  au  +  bv. 
P.D.E.  H 
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In  general,  if  the  Indicial  Equation  has  two  equal  roots  c  =  a, 
we  get  two  independent  solutions  by  substituting  this  value  of  c  in  z  and 
dz 
~-,     The  second  solution  will  always  consist  of  the  product  of  the 

first  solution  (or  a  numerical  multiple  of  it)  and  log  a;,  added  to 
another  series. 

Reverting  to  our  particular  example,  consideration  of  p  (x) 

and  q  (x),  as  in  Art.  96,  suggests  that  the  series  will  be  convergent 
for  |  x  |  <  1.    It  may  be  easily  shown  that  this  is  correct. 

Examples  for  solution. 

(i)  c-^g+(i-*»2-,-a 
(2)  Bessel's  equation  of  order  zero 

(4)  4(^-^)g  +  8^|-y=0. 

98.  Case  III.  Roots  of  Indicial  Equation  differing  by  an  integer, 

making  a  coefficient  of  z  infinite.     Consider  Bessel's  equation  of  order 
unitF'  9&y     fy  1 2  n     a 

dx2       dx    v  /y 
If  we  proceed  as  in  Art.  95,  we  find 

a0{c(c-l)+c-l}=0, 
i.e.     c2-l=0,       (1) 

^{(c  +  l^-lHO, 
i.e.    Oi^O,       (2) 

a2{(c+2)2-l}+a0=0,       (3) 

and  an{{c+n)2-l}+an_2=0,       (4) 

giving 

=  a0£c-U  -—. — ;  w    ~<^x2+- 

($  +  l)(^+3)        (c  +  l)(c+3)2(c+5) 

a^  +  .-.i- 
(c  +  l)(c+3)2(c+5)2(c+7) 

The  roots  of  the  indicial  equation  (1)  are  c  =  1  or  - 1. 
But  if  we  put  c  =  - 1  in  this  series  for  z,  the  coefficients  become 

infinite,  owing  to  the  facVor  (c  +  1)  in  the  denominator. 
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To  obviate  this  difficulty  replace  *  a0  by  (c  +  l)k,  giving 

V  (c+3)         (c+3)2(c+5) 

"  (c+3)2(c  +  5)2(c  +  7)a;6 '  +  " "/'  
 (5) 

and    a;2^2+^  +  (cc2-l)2  =  ̂ (c  +  l)(c2-l)=^(c  +  l)2(c-l). 

Just  as  in  Case  II.  the  occurrence  of  the  squared  factor  (c  +  1)2 
dz 

shows  that  =-,  as  well  as  z,  satisfies  the  differential  equation  when 

c  =  - 1.  Also  putting  c  =  1  in  z  gives  a  solution.  So  apparently  we 
have  found  three  solutions  to  this  differential  equation  of  only  the 
Second  order. 

On  working  them  out,  we  get  respectively 

fari{-^B»+^s*-2a   l2  6x«  +  ...j=Jcu,  say, 

ku  log  x  +&*r1jl  +- a;2  ___  (_  +  _)  ^ 

+22rlo(i+i+o):c6+-)=^'say' 

and  fee  {2  -4^  +  4276^  -42 .  6a ,  g^6  +  •••}  =  A™>  sa7- 

It  is  obvious  that  w=  - 4w,  so  we  have  only  found  two  linearly 
independent  solutions  after  all,  and  the  complete  primitive  is  au  +  bv. 

The  series  are  easily  proved  to  be  convergent  for  all  values  of  x. 

The  identity  (except  for  a  constant  multiple)  of  the  series  obtained 

by  substituting  c  ■=  - 1  and  c  =  1  respectively  in  the  expression  for  z 
is  not  an  accident.  It  could  have  been  seen  at  once  from  relation  (4), 

a„{(c+?i)2-l}+a„_2=0. 

If  c  =  l,  this  gives  an{(l  +n)2  -1}  +  a„_2=0   (6) 
Ifc=-1,  an{(-l+w)2-l}+an_2=0; 

hence  replacing  n  by  n  +  2, 

an+2{(l+n)*-l}+an=0   (7) 

[an+2  _       an  /o\ 
an  Jc=-l       L#„_2Jc=i 

As  [£](;=_;!  has  x~x  as  a  factor  outside  the  bracket,  while  [z]c=1  has 
x,  relation  (8)  really  means  that  the  coefficients  of  corresponding 

Of  course  the  condition  a0^0  is  thus  violated  ;   we  assume  in  its  place  that 
khO. 

Thus 
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powers  of  x  in  the  two  series  are  in  a  constant  ratio.  The  first  series 

apparently  has  an  extra  term,  namely  that  involving  x~x,  but  this 
conveniently  vanishes  owing  to  the  factor  (c  +  1). 

In  general,  if  the  Indicia!  Equation  has  two  roots  a  and  /3  (say 
a  >  /3)  differing  by  an  integer,  and  if  some  of  the  coefficients  of  z  become 

infinite  when  c=/3,  we  modify  the  form  of  zby  replacing  a0  by  k(c-/3). 
We  then  get  two  independent  solutions  by  putting  c=fi  in  the  modified 

dz 
form  of  z  and  ~-.     The  result  of  putting  c=a  in  z  merely  gives  a 

numerical  multiple  of  that  obtained  by  putting  c  =j3. 

Examples  for  solution. 

(1)  Bessel's  equation  of  order  2, 

(3)*(l-»)g-(l+3*)g-!f-a. 

(4)  (x  +  x2  +  a?)^  +  3x2^--2y  =  0. ax1  dx 

99.  Case  IV.  Roots  of  Indicial  Equation  differing  by  an  integer, 

making  a  coefficient  of  z  indeterminate.    Consider  the  equation d*y  ,oJy 

dx'' 

Pro
cee

din
g  

as  usu
al,

  
we 

 
get

 
.-****.-  I 

c(c-l)=0,   (1) 

ax(c  +  l)c=0,   (2) 

a2(c+2)(c  +  l)+a0{-c(c-l)+2c  +  l}=0,   (3) 

«3(c+3)(c+2)+a1{-(c  +  l)c+2(c  +  l)+l}=0,   (4) 
and  so  on. 

(1)  Gives  c=0  or  1. 

The  coefficient  of  ax  in  (2)  vanishes  when  c  =0,  but  as  there  is  no 

other  term  in  the  equation  this  makes  ax  indeterminate  instead  of 

infinite. 
If  c-1,  «i  =0. 
Thus,  if  c=0,  from  equations  (3),  (4),  etc. 

2a2  +  «0=0, 

6a3+3a1=0, 
12a4+3a2=0, 

etc., 



SOLUTION  IN  SERIES  117 

giving  [z]c=o  =  «o(l-2a;2+8a;4+80 

ax{x-\ 
.     1    ,      3     7    1 

This  contains  two  arbitrary  constants,  so  it  may  be  taken  as  the 

complete  primitive.  The  series  may  be  proved  convergent  for 

\x\<l. 

But  we  have  the  other  solution  given  byc  =  l.  Working  out 
the  coefficients, 

[2]c=1  =  «oa;| 1"2x2  +  40a;4+560a;6- 
that  is,  a  constant  multiple  of  the  second  series  in  the  first  solution. 

This  could  have  been  foreseen  from  reasoning  similar  to  that  in 
Case  III. 

In  general,  if  the  Indicial  Equation  has  two  roots  a  and  /3  (say 

a  >/3)  differing  by  an  integer,  and  if  one  of  the  coefficients  of  zjwcomes 

indeterminate  when  c  =  /3,  the  complete  primitive  is  given  by  putting 
c=/3  in  z,  which  then  contains  two  arbitrary  constants.  The  result  oj 

putting  c  =  a  in  z  merely  gives  a  numerical  multiple  of  one  of  the  series 
contained  in  the  first  solution. 

Examples  for  solution. 

(1)  Legendre's  equation  of  order  unity, 

(2)  Legendre's  equation  of  order  n, 

(l-x«)^-2*|  +  n(n  +  l)t,  =  0. 

(3)  0  +  ̂ =0.  (4)  (2+x*)d^2  +  xfx  +  (l+x)y  =  0. i 

100.  Some  cases  where  the  method  fails.    As  ex  cannot  be  expanded 
in  ascending  powers  of  x,  we  must  expect  the  method  to  fail  in 
some  way  when  the  differential  equation  has  such  a  solution.     To 

construct  ah  example,  take  the  equation  ~  -y=0,  of  which  ez 

and  e~z  are  solutions,  and  transform  it  by  putting  z  =-. 

We  have  dy_dx    dy_      1  dy _         dy >»e  nave  7-  —    7  ,     —  „7     —       jj     i 
dz     dz    dx        zl  dx  dx 

and         ̂ /=<te  *(<k)=  -X2<L(  -x*d'f)=x*d*y  +  2%»(Jy. dz2     dz  dx\dz/  dx\         dx)         dx2     ̂      dx 
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Hence  the  new  equation  is 

If  we  try  to  apply  the  usual  method,  we  get  for  the  indicial 

equation,  -a0=0,  which  has  no  roots,*  as  by  hypothesis  a0=/=0. 
Such  a  differential  equation  is  said  to  have  no  regular  integrals 

i  _i 

in  ascending  powers  of  x.     Of  course  ex  and  e  x  can  be  expanded  in 

powers  of  - . 

The  examples  given  below  illustrate  other  possibilities,  such  as 
the  indicial  equation  having  one  root,  which  may  or  may  not  give 
a  convergent  series. 

It  will  be  noticed  that,  writing  the  equation  in  the  form 

in  every  case  where  the  method  has  succeeded  p(x)  and  q(x)  have 
been  finite  for  x=0,  while  in  all  cases  of  failure  this  condition  is 
violated. 

For  instance,  in  the  above  example, 

p(x)=-2, 

q(x)=  — -2,  which  is  infinite  if  x=0. 

Examples  for  solution. 

(1)  Transform  Bessel's  equation  by  the  substitution  x  =  l/z. 
Hence  show  that  it  has  no  integrals  that  are  regular  in  descending 

powers  of  x. 

(2)  Show  that  the  following  equation  has  only  one  integral  that  is 
regular  in  ascending  powers  of  xt  and  determine  it : 

(3)  By  putting  y  =  vx2(l  +2x)  determine  the  complete  primitive  of 
the  previous  example. 

(4)  Show  that  the  following  equation  has  no  integral  that  is  regular 
in  ascending  powers  of  x,  as  the  one  series  obtainable  diverges  for  all 
values  of  a;:  My  dy 

(5)  Obtain  two  integrals  of  the  last  example  regular  in  descending 
powers  of  x. 

*  Or  we  may  say  that  it  has  two  infinite  roots. 
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(6)  Show  that  the  following  equation   has  no  integrals  that  are 
regular  in  either  ascending  or  descending  powers  of  x  : 

s«(l  -  x2)  Pi  +  2x*  P  -  (1  -  x2fy =0. ax2         ax 

[This  is  the  equation  whose  primitive  is  aex+x~*  +  be~x~x'^.] 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  IX. 

(1)  Obtain  three  independent  solutions  of 

(2)  Obtain  three  independent  solutions,  of  the  form 

dz  .     d2z 
z>  dc>  and  a?' 

of  the  equation        x2  ~  +  Sx-r^  +  (1  -  x)  -?■  -  y  =  0. T  ax2         ax2  ax 

(3)  Show  that  the  transformation  y  —  j-j-  reduces  Riccati's  equation 

^  +  by2  =  cxm (L  v 
to  the  linear  form  -=-=  -  bcvxm=0. 

dx- 
(4)  Show  that  if  y  is  neither  zero  nor  an  integer,  the  Hyper  geometric 

Equation  1%  j 

x(l-x)^2  +  {y-(a  +  {3  +  l)x}£-apy  =  0 

has  the  solutions  (convergent  if  \x\  <  1) 

F(a,/3,y,x)    and    &-*F(a-y  +  \t  /3-y  +  l,  2-y,  x), 
where  F(a,  f3,  y,  x)  denotes  the  Hypergeometric  Series 

.  ,    a/3  r,a(a  +  l)i8(i8  +  l)ra,a(a  +  l)(a  +  2)j8(i8  +  l)(i9  +  2) 
l.y         1.2.y(y  +  l)  1  .  2  .  3  .  y(y  +  l)(y  +  2) 

(5)  Show  that  the  substitutions  a?  =  1  -  z  and  x  =  1/z  transform  the 
hypergeometric  equation  into 

z(l-2)g+{a  +  /3  +  l-y-(a  +  /3  +  l)2}!-«/fy  =  0 

and  z2(l-z)0  +  z{(l-a-/3)-(2-y)4^  +  a/fy  =  O 

respectively,  of  which  the  first  is  also  of  hypergeometric  form. 
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■ Hence,  from  the  last  example,  deduce  that  the  original  equation  has 
the  additional  four  solutions  : 

F(a,0,  a  +  p  +  l-y,  1-x), 
(\-x)y—PF(y-l3,y-a.l+y-a-^,l-x), 

x~aF(a,  a  +  l-y,  a  +  l-/8,  or1), 

and  x-PF(P,  p  +  l-y,p  +  l-a,  ar1). 

(6)  Show  that  the  substitution  y  —  (1  -x)nY  transforms  the  hyper- 
geometric  equation  into  another  hypergeometric  equation  if 

n=>y-a-j3. 

Hence  show  that  the  original   equation   has  the   additional   two 

solutions  :  (i  _x)y-«-^(y_aj  y_^  y>  x) 
and  x1-y(l-x)y*-^F(l-a,  l-/3,2-y,x). 

[Note. — Ex.  5  showed  how  from  the  original  two  solutions  of  the 
hypergeometric  equation  two  others  could  be  deduced  by  each  of  the 

transformations   x  =  l-z   and   x  =  l/z.     Similarly   each   of   the   three 

transformations  x  =  =   ,  x  =  — -,  x  =   .  'gives  two  more,  thus  making 1  -Z  2-1  Z        &  ° 

twelve.  By  proceeding  as  in  Ex.  6  the  number  can  be  doubled,  giving 

a  total  of  twenty-four.  These  five  transformations,  together  with  the 
identical  transformation  x  =  z,  form  a  group  ;  that  is,  by  performing  two 
such  transformations  in  succession  we  shall  always  get  a  transformation 
of  the  original  set.] 

(7)  Show  that,  unless  2w  is  an  odd  integer  (positive  or  negative), 

Legendre's  equation 

(l-**)d^-2xd£  +  n(n  +  l)y=0 
has  the  solutions,  regular  in  descending  powers  of  x, 

x-n~1F{\n  +  \,  bi  +  1,  n+f,  x~2), 

xnF(-%n,  \-ln,  \-n,  x~2). 
[The  solution  for  the  case  2n=  - 1  can  be  got  by  changing  x  into 

x-1  in  the  result  of  Ex.  4  of  the  set  following  Art.  97.] 

(8)  Show  that  the  form  of  the  solution  of  Bessel's  equation  of 
order  n  depends  upon  whether  n  is  zero,  integral,  or  non-integral, 
although  the  difference  of  the  roots  of  the  indicial  equation  is  not  n 
but  2n. 



*  CHAPTER  X 

EXISTENCE  THEOREMS  CF  PICARD,  CAUCHY,f  AND 
FROBENTUS 

101.  Nature  of  the  problem.  In  the  preceding  chapters  we  have 

studied  a  great  many  devices  for  obtaining  solutions  of  differentia] 
equations  of  certain  special  forms.  At  one  time  mathematicians 

hoped  that  they  would  discover  a  method  for  expressing  the  solution 
of  any  differential  equation  in  terms  of  a  finite  number  of  known 
functions  or  their  integrals.  When  it  was  realised  that  this  was 

impossible,  the  question  arose  as  to  whether  a  differential  equation 
in  general  had  a  solution  at  all,  and,  if  it  had,  of  what  kind. 

There  are  two  distinct  methods  of  discussing  this  question. 

One,  due  to  Picard,  has  already  been  illustrated  by  examples 

(Arts.  83  and  84).  We  obtained  successive  approximations, 
which  apparently  tended  to  a  limit.  We  shall  now  prove  that 
these  approximations  really  do  tend  to  a  limit  and  that 

this  limit  gives  the  solution.  Thus  we  shall  prove  the  exist- 
ence of  a  solution  of  a  differential  equation  of  a  fairly  general 

type.  A  theorem  of  this  kind  is  called  an  Existence  Theorem. 

Picard's  method  is  not  difficult,  so  we  will  proceed  to  it  at  once 
before  saying  anything  about  the  second  method.  It  must  be 
borne  in  mind  that  the  object  of  the  present  chapter  is  not  to 

obtain  practically  useful  solutions  of  particular  equations.  Our 

aim  now  is  to  prove  that  the  assumptions  made  in  obtaining 
these  solutions  were  correct,  and  to  state  exactly  the  conditions 
that  are  sufficient  to  ensure  correctness  in  equations  similar  to 

those  treated  before,  but  generalised  as  far  as  possible. 

*  This  chapter  should  be  omitted  on  a  first  reading. 
t  Augustin  Louis  Cauchy.  of  Paris  (1789-1857),  may  be  looked  upr  n  as  the 

creator  of  the  Theory  of  Functions  and  of  the  modern  Theory  of  Differential  Equa- 
tions. He  devised  the  method  of  determining  definite  integrals  by  Contour 

Integration. 
121 
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102.  Picard's  method  of  successive  approximation.    If  -^  =f(x,  y) 

and  y  =  b  when  x  =  a,  the  successive  approximations  for  the  value 
of  y  as  a  function  of  x  are 

o  +  f  f(x,  b)dx=yvssij, 

b  +  I  f(x,  y2)dx  =y3,  say,  and  so  on. 

We  have  already  (Arts.  83  and  84)  explained  the  application  of 

this  method  to  examples.  We  took  the  case  where  f(x,  y)=x+y2, 
b=a=0,  and  found 

These  functions  appear  to  be  tending  to  a  limit,  at  any  rate  f&r 
sufficiently  small  values  of  x.  It  is  the  purpose  of  the  present 
article  to  prove  that  this  is  the  case,  not  merely  in  this  particular 
example,  but  whenever  f(x,  y)  obeys  certain  conditions  to  be 

specified. 
These  conditions  are  that,  after  suitable  choice  of  the  positive 

numbers  h  and  k,  we  can  assert  that,  for  all  values  of  x  between 

a-h  and  a  +  h,  and  for  all  values  of  y  between  b-Jc  and  b+k,  we 
oan  find  positive  numbers  M  and  A  so  that 

(i)  \f(x,y)\<M, 

(ii)  \f(x,y)-f(x,y')\<A\y-y'\,  y  and  y'  being  any  two 
values  of  y  in  the  range  considered. 

In  our  example /(cc,  y)  =x+y2,  condition  (i)  is  obviously  satisfied, 

taking  for  M  any  positive  number  greater  than  (h  +  k2). 

Also     \(x  +  y2)-(x  +  y'2)\=\y  +  y'\\y-y'\<2k\y-y'\, 
so  condition  (ii)  is  also  satisfied,  taking  A  =2k. 

Returning  to  the  general  case,  we  consider  the  differences  between 

the  successive  approximations. 

V\  ~  °  =     f(x>  b)dx,  by  definition, 

J  a 

but  \f(x,  b)\<M,  by  condition  (i), 
■so 

I  V\  ~  &  I  <  I    Mdx I  J  a i.e.  <M\x-a\<Mh   (1) 
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Also  y2~yi=b  +  \  f(x,  yjdx-b  -  I  f(x,  b) dx,  by  definition, J  a  Ja 

=  \  {f{xiy1)-f(xib)}dx; 
J  a 

but  |  f(x,  yx)  -f(x,  b)  |  <  A  |  yx  -  b  | ,  by  condition  (ii), 

<AM\x-a\,  from  (1), 

$o  \y2-y1\<  II   AM(x-a)da 
I  Ja 

i.e.  <|M(j-a)k|M2,...(2) 

Similarly,  |  yw  -*,„_,  |  <-,  MA»-*Kn   (3) 

1 

ni 
Now  the  infinite  series 

1  «._  „  M 

is  convergent  for  all  values  of  h,  A,  and  M. 
Therefore  the  infinite  series 

b  +  {y1-b)+(y2-y1)  +  ...+  (yn  -  yn_x)  +  ..., 

each  term  of  which  is  equal  or  less  in  absolute  value  than  the  corre- 
sponding term  of  the  preceding,  is  still  more  convergent. 

That  is  to  say  that  the  sequence 

yi=b  +  {yx-b), 

y2  =  b  +  (y1-b)  +  (y2-yl), 

and  so  on,  tends  to  a  definite  limit,  say  Y(x),  which  is  what  we 
wanted  to  prove. 

We  must  now  prove  that  Y  satisfies  the  differential  equation. 
At  first  sight  this  seems  obvious,  but  it  is  not  so  really,  for  we 

must  not  assume  without  proof  that 

Lt     f(x,yn_1)dx=\  f{x,  Lt  yn^)dx. 

The  student  who  understands  the  idea  of  uniform  convergence 

will  notice  that  the  inequalities  (1),  (2),  (3)  that  we  have  used  to 

prove  the  convergence  of  our  series  really  prove  its  uniform  con- 
vergence also.  If,  then,  f(x,  y)  is  continuous,  yv  y2,  etc.,  are 

continuous  also,  and  Y  is  a  uniformly  convergent  series  of  con- 
tinuous functions ;  that  is,  Y  is  itself  continuous,*  and  Y  -  </„_! 

tends  uniformly  to  zero  as  n  increases. 

Hence,  from  condition  (ii),  f(x,  Y)-f(x,  yn_^)  tends  uniformly 
to  zero. 

*  See  Bromwich's  Infinite  Series,  Art.  45. 
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From  this  we  deduce  that 

Y)  -f(x,  i/n-x)}  tends  to  zero. 

Thus  the  limit  of  the  relation 

yn  =  b  +  \  f(x,  yn.x)dx 

J  a 

is  Y=b  +  \Xf{x,Y)dx; 

J  a 

dY 
therefore*  -=—=f(x,  Y),  and  Y  =6  when  x  =  a. 

This  completes  the  proof. 

103.  Cauchy's    method.     Theorems    on    infinite    series    required. 

Cauchy's  method  is  to  obtain  an  infinite  series  from  the  differential 
equation,  and  then  prove  it  convergent  by  comparing  it  with  another 
infinite  series.  The  second  infinite  series  is  not  a  solution  of  the 

equation,  but  the  relation  between  its  coefficients  is  simpler  than 
that  between  those  of  the  original  series.  Our  first  example  of  this 
method  will  be  for  the  simple  case  of  the  linear  equation  of  the  first 
order  dy       ,  . 

fx=vw-y- Of  course  this  equation  can  be  solved  at  once  by  separation  of 
the  variables,  giving 

logy=c  +  I  p(x)dx. 

However,  we  give  the  discussion  by  infinite  series  because  it  is 
almost  exactly  similar  to  the  slightly  more  difficult  discussion  of 

dx^{x)-dx+q{x)-y> 
and  other  equations  of  higher  order. 

We  shall  need  the  following  theorems  relating  to  power  series. 
The  variable  x  is  supposed  to  be  complex.  For  brevity  we  shall 
denote  absolute  values  by  capital  letters,  e.g.  An  for  \an\. 

CO 

(A)  A  power   series  "V  ««#"  is  absolutely  convergent  at  all o 

points  within  its  circle  of  convergence  \x  \=R. 
(B)  The  radius  R  of  this  circle  is  given  by 

provided  that  this  limit  exists. 

*  When  differentiating  the  integral,   the  student  should  remember  that  the 
integral  varies  solely  in  consequence  of  the  variation  of  its  upper  limit. 
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^)  Tx  (i>«*n)  -  S  ̂n*"-1,  Within  |*|-$. 

(D)  If  we  have  two  power  series,  then  for  points  within  the 
circle  that  is  common  to  their  circles  of  convergence, 

(00  \       /    00  \ 
 00 

2  a*xn)  (S  ̂"J  =2  (a«6o  +««-A  +  ...  +  %K)%n- o  '  v  o  7        u 
oo  oo 

(£")  If  ̂   an£n  =  V  bnxn  for  all  values  of  x  within  the  circle o  o 

\x\  =  R,  then  an  =  bn. 

(F)  An  <  MR~n,  where  M  exceeds  the  absolute  value  of  the 
sum  of  the  series  at  points  on  a  circle  |a;|=J2  on  which  the  series 
is  convergent. 

Proofs  of  these  theorems  will  be  found  in  Bromwich's  Infinite 
Series  : 

A  in  Art.  82, 

B  is  an  obvious  deduction  from  D'Alembert's  ratio  test,  Art.  12, 
C  in  Art.  52, 

D      »      54, 
E      „      52, 
F      „      82. 

Two  theorems  on  uniform  convergence  will  be  required  later  on, 
but  we  will  defer  these  until  they  are  needed. 

dy 

104.  *  Convergence  of  the  solution  in  series  of  —  =yp  (x).    Let n 
00 

p(x)  be  capable  of  expansion  in  a  power  series  y]pnxn  which  is o 

convergent  everywhere  within  and  on  the  circle  |  »  |  =  R.    We  shall 

00 prove    that   a   solution   y  =  S]  anxn    can    be    obtained    which    is o 
convergent  within  this  circle. 

Substituting  in  the  differential  equation,  we  obtain 
00  GC  GO 

V  nanX"-1  -  2  anxn  2  pnxn  (Theorem  C) 0  0  0 
00 

*  2  (anPo  +  «n-i?i  +  an-zP2  +  •  •  •  +  «o?n)  xn.    (Theorem  D) 0 

Equating  the  coefficients  of  scn_1,  (Theorem  E) 

nan=an_1p0  +  an_2p1+an_3p2+...  +  a0pn_l   (1) 

*  Revise  Art.  7  before  reading  the  following. 
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Hence  for  the  absolute  values  of  the  a's  and/'s,  denoted  by  the 
corresponding  capital  letters,  we  get 

nAnzc  An_1PQ  +  An_tP1  +  An_zP2  + ...  +  AQPn^   (2) 

Let  M  be  a  positive  number  exceeding  the  absolute  value  of 
p  (x)  on  the  circle  \x\=R, 

then  Pn<MR~n;  .....   (3)        (Theorem  F) therefore,  from  (1)  and  (3), 
M 

An<  —  (An_1  +  An_2R-1+An_3R-*  +  ...+A0R-n+i)   (4) to 

Define  Bn  (n  >  0)  as  the  right-hand  side  of  (4),  and  define 
B0  as  any  positive  number  greater  than  A0;  then  An  <  Bn. 

M 

But       -(An_1  +  An_2R-i+An_sR-*  +  ...  +A0R-"+i) 

M  n  —  1  M 

=—  An_x  +  nR  nl  (An_2  +  An_3R-i  +  ...  +A0R~n+*). 
Hence,  defining  Bn  as  above, 

_M  (n-l)Bn_r 

ix'     <\n+RJ  Bn~1 '  as  An-X  < Bn-X ' 

therefore  _^L<^+1, 

Bn_1^n+R' T,     Bn       1 
i.e.       Lt  r^-^  p- n— >-oo  -Djj— 1        " 

Therefore  the  series  ̂   Bnxn  is  convergent  within  the  circle 
\x\=R.  o  (Theorem  B.) 

00 

Still  more  therefore  is  the  series  y]  anxn  convergent  within  the o 

same  circle,  since  An  <  Bn. 

The  coefficients  ax,  a2,  ...  can  all  be  found  from  (1)  in  terms  of 

the  £>'s,  which  are  supposed  known,  and  the  arbitrary  constant  a0. 

105.  Remarks  on  this  proof.  The  student  will  probably  have 
found  the  last  article  very  difficult  to  follow.  It  is  important  not 
to  get  confused  by  the  details  of  the  work.     The  main  point  is  this. 

We  should  like  to  prove  that    Lt     .  n  ̂R.     Unfortunately  the n->oo  -fin— i 

relation  defining  the  A's  is  rather  complicated.     We  first  simplify 
it  by  getting  rid  of  the  n  quantities  P0,   Plf  ...Pn..1.     Still   the 
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relation  is  too  complicated,  as  it  involves  n  A' a.  We  need  a  simple 
relation  involving  only  two.  By  taking  a  suitable  definition 

of  Bn  we  get  such  a  relation   between  Bn  and  Bn_x,  leading  to- 

Lt  ̂-<R- 

We  repeat  that  the  object  of  giving  such  a  complicated  dis- 
cussion of  a  very  simple  equation  is  to  provide  a  model  which  the 

student  can  imitate  in  other  cases. 

Examples  for  solution. 

(1)  Prove  that,  if  p(x)  and  q(x)  can  be  expanded  in  power  series 
convergent  at  all  points  within  and  on  the  circle  X  =  R,  then  a  power 
series  convergent  within  the  same  circle  can  be  found  in  terms  of  the 
first  two  coefficients  (the  arbitrary  constants)  to  satisfy 

g=^).  !  +  ̂ )*, 
[Here    n  (n-l)an  =  (n-  l)an_lPo  +  (n  -  2)an_2p1  +  ...+  axpn_t 

+  an-Z%  +  «n-S?l  +  •  •  •  +  «0?n-2- 

Hence,  if  M  is  any  number  exceeding  the  absolute  values  of  both 
p(x)  and  q(x)  at  all  points  on  the  circle  X  =  R, 

M 

An  <  -{(An_}+An_2R-i  +  ...  +A1R~"+*) 

+  (An_2  +  An_zR~i  + . . .  +  A0R-»+*)} 

<M(l+R)(An_1  +  An_2R-i  +  ...+A0R-«+i). 

Define  the  right-hand  side  of  this  inequality  as  Bn  and  then  proceed 
as  before.] 

(2)  Prove  similar  results  for  the  equation 

106.  Frobenius'  method.  Preliminary  discussion.  When  the 
student  has  mastered  the  last  article,  he  will  be  ready  for 

the  more  difficult  problem  of  investigating  the  convergence  of 
the  series  given  by  the  method  of  Frobenius.  In  the  preceding 
chapter  (which  should  be  thoroughly  known  before  proceeding 
further),  we  saw  that  in  some  cases  we  obtained  two  series 

involving  only  powers  of  x,  while  in  others  logarithms  were 
present. 

The  procedure  in  the  first  case  is  very  similar  to  that  of  the  last 
article.  But  in  the  second  case  a  new  difficulty  arises.  The  series 

with    logarithms    were    obtained   by    differentiating    series    with 
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Tespect  to  a  parameter  c.  Now  differentiation  is  a  process  of  taking 
a  limit  and  the  summation  of  an  infinite  series  is  another  process 

of  taking  a  limit.  It  is  by  no  means  obvious  that  the  result  will 
be  the  same  whichever  of  these  two  processes  is  performed  first, 

■even  if  the  series  of  differential  coefficients  be  convergent. 
However,  we  shall  prove  that  in  our  case  the  differentiation  is 

legitimate,  but  this  proof  that  our  series  satisfy  conditions  sufficient 

to  justify  term-by-term  differentiation  is  rather  long  and  bewildering. 
To  appreciate  the  following  work  the  student  should  at  first 

ignore  all  the  details  of  the  algebra,  concentrating  his  attention  on 
the  general  trend  of  the  argument.  When  this  has  been  grasped, 
he  can  go  back  and  verify  the  less  important  steps  taken  for  granted 
on  a  first  reading. 

107.  Obtaining  the  coefficients  in  Frobenius'  series  when  the  roots 
of  the  indicial  equation  do  not  differ  by  an  integer  or  zero.  Consider 

the  expression 

.  d2y  .  .    dy  .  /  dy  d2y\ 

where  p  (%)  and  q  (x)  are  both  expansible  in  power  series  ̂   pnxn 
CO  o 

and  V  qnxn  which  are  convergent  within'and  on  the  circle  |  x  \  =  R. o 

We  are  trying  to  obtain  a  solution  of  the  differential  equation 

♦(**£3)-«   -w 

If  y  is  replaced  by  x°  j^  anxn  (with  a0=f  0),  <p  (x,  y,  J,  ̂Jj 
becomes  ° 

^anxP +n{(c  +  n)(c+n-l)-(c  +  n)p(x)-g(x)} 0 

oo 

=  2  9n^+n,  say, 0 

where         g0  =  ao  M0"1)  -PoC-<lo} 

and  gn  =  an  {(c  +  n)  (c  +n  - 1)  -p0  {e+n)-q0} 

-«n-i  (Pi (c  +  n - 1)  +fc} -an_2  {p2 (c+n-2)  +q2} 
...  -a0(pnc+qn). 

For  brevity,  denote 

c  (c  -  1)  -  p0c-qQ  by  f(c), 

so  that  (c  +  n)  (c  +  n  - 1)  -  p0  (c  +  n)  -  q0  =f  (c  +  n). 
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Then0n=Oif 

anAc  +  n)=an_1{p1{c  +  n-l)+q1}+an__2{p2(c  +  n-2)+q2} 
+  ...+a0(pnc+qn)   (2) 

If  we  can  choose  the  a's  so  that  all  the  #'s  vanish,  and  if  the 
00 

series  ̂   anxn  so  obtained  is  convergent,  a  solution  of  (1)  will  have o 
been  obtained. 

Now  as  a0=^-0,  gQ=0  gives 
c(c-l)-^oC-?0=0   (3) 

This  is  a  quadratic  equation  in  c,  and  is  called  the  Indicial 
Equation. 

Let  its  roots  be  a  and  /3. 

If  either  of  these  values  is  substituted  for  c  in  the  equations 
9i=®>  <72=0>  5r3=0>  •••>  values  for  av  a2,  a3,  ...  are  found  in  the  form 

an=ajin(c)/[f(c+n)f(c  +  n-l)  .../(o  +  l)],    (4) 
where  hn(c)  is  a  polynomial  in  c.     The  student  should  work  out  the 

values  of  ay  and  a2  in  full  if  he  finds  any  difficulty  at  this  point. 
The  process  by  which  an  is  obtained  from  (2)  involves  division 

by  /  (c  +  n)-     This  is  legitimate  only  when  /  (c  +  n)=/=Q. 

Now  as  f(c)  =  (c-a)  {c-/3), 
f(c  +  n)  =  (c  +n  -  a)  (c  +  n  -  /3), 

so  f(a  +n)=n(a+n-fi),      (5) 
and  f({3+n)=n(/3+n-a)   (6) 

Thus,  if  a  and  /3  do  not  differ  by  an  integer  or  zero,  the  divisors 

cannot  vanish,  so  the  above  process  for  obtaining  the  «'s  is  satis- 
factory. 

108.  Convergence  of  the  series  so  obtained.  Let  M  be  a  positive 

number  exceeding  the  absolute  values  of  p(x)  and  q(x)  at  all  points 
on  the  circle  |  x  \  =R. 

Then  P»<MR-° 
and  Q,<MR", 

so  that  | ps(c  +n  - s)  +  q„\  <  M (C  +  n  -  s  +  l)R~3. 
From  these  inequalities  and  from  (2), 

An<  M{An^(C+n)R-1  +  ...  +AQ{C  +  l)R-n}/F(c+n),  ...(7) 
iay  An<Bn,  denoting  the  right-hand  side  of  (7)  by  B„.  This 
iefines  Bn  if  n>0.  Define  B0  as  any  positive  number  greater 

'"Jian  A0.     This  definition  of  Bn  gives 
Bn+lF(c  +  n+  1)  -BnF(c  +n)R~1  =AnM(C  +n  +  l)R~l 

<BnM(C  +  n  +  l)R~\ 
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so  that    *j*<rle+?JM<0+*  +  1\ Bn  RF(c  +  n  +  l) 

i  e     <  l(o+w)(c  +  n-l)-y0(c+n)-  g0\+M(C+n  +  l)  ̂ R\{c+n  +  l)(c+n)-p0(c+n  +  l)-q0\ 

Now  for  large  values  of  n  the  expression  on  the  right  approaches 

the  value  n2       i 

Rn2  =  R' Thu
s  

Lt-"^<C
^. 

00  00 

Therefore  the  series  V}  2?„a;n  and  still  more  the  series  V  ana:n U  0 

converges  within  the  circle  \x\  =  R. 
Thus,  when  a  and  ft  do  not  differ  by  an  integer,  we  get  two 

convergent  infinite  series  satisfying  the  differential  equation. 

109.  Modification  required  when  the  roots  of  the  indicial  equation 

differ  by  zero  or  an  integer.  "When  a  and  ft  are  equal,  we  get  one 
series  by  this  method. 

When  a  and  ft  differ  by  an  integer,  this  method  holds  good 

for  the  larger  one,  but  not  for  the  smaller,  f or  if  a  -  ft  =  r  (a  positive 
integer),  then  from  (5)  and  (6) 

f(a  +n)=n(a  +n-  ft)  =n(n  +r), 

but  f(ft+n)=n(ft  +  n  -a)=n(n-r), 
which  vanishes  when  n  =  r,  giving  a  zero  factor  in  the  denominator 
of  ar  when  c=ft.  As  exemplified  in  Arts.  98  and  99  of  the  preceding 
chapter,  this  may  give  either  an  infinite  or  indeterminate  value  for 

some  of  the  a's.  This  difficulty  is  removed  by  modifying  the  form 
assumed  for  y,  replacing  a0  by  k(c-ft).  This  will  make  a0,  alt  ... , 
a,_,  all  zero  and  an  ar+1,  ...  all  finite  when  c  is  put  equal  to  ft.  This 
change  in  the  form  assumed  for  y  will  not  alter  the  relation  between 

the  a's,  and  so  will  not  affect  the  above  investigation  of  convergence. 

110.  Differentiation  of  an  infinite  series  with  respect  to  a  parameter 

c,  the  roots  of  the  indicial  equation  differing  by  an  integer.     In  Art.  107 

we  obtained  an  infinite  series  af"S]anxn,  where  the  a's  are  functions o 

of   c.      As   in   the   preceding  chapter,  we   have   to   consider  the 
differentiation  of  this  series  with  respect  to  c,  c  being  put  equal  to 
the  smaller  root  ft  after  the  differentiation. 
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Now  while  this  differentiation  is  being  performed  we  may  con- 
sider a;  as  a  constant.     The  series  can  then  be  considered  as  a  series 

of  functions  of  the  variable  c,  sayVi/^c),  where 

=  af+*ajin(c)/[f(c+n)f(c+n-l)  .../(« +  1)1  from  (4)» 

where  aQ  =  k(c-fi)  and  the  factor  (c-/3)  is  to  be  divided  out  if  it 
occurs  in  the  denominator. 

Now  Qoursat  (Cours  d' Analyse,  Vol.  II.  2nd  ed.  p.  98)  proves 
that  if  (i)  all  the  xfs's  are  functions  which  are  analytic  and  holo- 
morphic  within  a  certain  region  bounded  by  a  closed  contour  and 

continuous  on  this  contour,  and  if  (ii)  the  series  of  \//-'s  is  uniformly 
convergent  on  this  contour,  then  the  differentiation  term  by  term 
gives  a  convergent  series  whose  sum  is  the  differential  coefficient 
of  the  sum  of  the  original  series. 

For  the  definitions  of  holomorphic  and  analytic,  see  the  beginning 

of  Vol.  II.  of  Goursat.  It  will  be  seen  that  the  xfr's  satisfy  these 
definitions  and  are  continuous  as  long  as  we  keep  away  from  values 

of  c  that  make  them  infinite.  These  values  are  a -I,  /3-1,  a  -2, 

j8  -2,  etc.  To  avoid  these  take  the  region  inside  a  circle  of  centre 
c  =  /3  and  of  any  radius  less  than  unity. 

We  shall  now  prove  that  the  series  is  uniformly  convergent 
everywhere  inside  this  region.  This  will  prove  it  is  uniformly 
convergent  on  the  contour  of  a  similar  but  slightly  smaller  region 
inside  the  first. 

Let  s  be  a  positive  integer  exceeding  the  largest  value  of  C  within 
the  larger  region. 

Then  for  all  values  of  c  within  this  region,  for  values  of  n  exceed- 
ing 8, 

F (c  +  n)  =  \(c  +  n)(c  +n  -1)  -pQ(c+n)  -q0\,  by  definition  of  F, 

^(C+n)2-{P0  +  l){C+n)-Q0,     as  \u-v\  >  \  u  \  -  \  v\, 

>  (n  - s)2  -  (M  +  l)(s  +n)  -  M,      as  P0<M  and  Q0<M, 

>  n2  +In+J,  say,  where  /  and  J  are  independent  of 
n,  x,  or  c   (8) 

For  sufficiently  great  values  of  n,  say  n>m,  the  last  expression 
is  always  positive. 

Let  H  denote  the  maximum  value  of 

M{Am_x{C  +m)R-1+Am_2(C+m  -l)R~2  +  ...  +A0(C  +  1  )R~m]  (9) 
for  all  the  values  of  c  in  the  region. 
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Then  if  Em  be  any  positive  number  greater  than  Bm,  and  .-if, 
for  values  of  n  >  m,  En  be  denned  by 

F  _ M{En_x{s  +n)R~1  +  ...  Em(s  +  m  + 1 ) fl-"+™}  +  HR~n^ 
n  n*+In+J  ' UU) 

an  that  F         MEm(s+m+l)R-i+HR-i so  that  Em+1-      {m  +  1)2  +  I{m  +  1)+J     > 
which  has  a  numerator  greater  than  and  a  denominator  less  than 

those  of  Bm+l,  from  (8),  (9),  and  the  definition  of  Bn  as  the  right- 
hand  side  of  (7),  we  see  that 

Em+1  >  "m+V 
Similarly  En  >  Bn  for  all  values  of  n  >  m. 

J?  1 

From  (10)  we  prove    Lt    -^±i=D-     This  piece  of  work  is  so 

similar  to  the  corresponding  work  at  the  end  of  Art.  108  that  we 
leave  it  as  an  exercise  for  the  student. 

CO 

Hence  ̂   EnRxn  is  convergent  if  RX<R. in 

Therefore  within  the  circle  |  x  |  =  R\  and  within  the  region 
specified  for  c, 

I  anxc+n  |  <  AnR1t+n  <  BnR1s+n  <  EnR1'+n. 

This  shows  that  Hanxc+n  satisfies  Weierstrass's  M-test  for  uniform 

convergence  (Bromwich,  Art.  44),  as  Rv  s,  and  the  £"s  are  all  inde- 
pendent of  c. 

This  completes  the  proof  that  2^rj=2a„af+n  satisfies  all  the 
conditions  specified,  so  the  differentiation  with  respect  to  c  is  now 

justified.  This  holds  within  the  circle  1^1=^.  We  can  take  Rx 

great  enough  to  include  any  point  within  the  circle  |a;|  =R. 
If  the  roots  of  the  indicial  equation  are  equal  instead  of  differing 

by  an  integer,  the  only  difference  in  the  above  work  is  that  a0  is 

not  to  be  replaced  by  k(c-(3),  as  no  (c-/3)  can  now  occur  in  the 
denominator  of  an. 



CHAPTER   XI 

ORDINARY  DIFFERENTIAL  EQUATIONS  WITH  THREE 

VARIABLES,  AND  THE  CORRESPONDING  CURVES  AND 
SURFACES 

111.  We  shall  now  consider  some  simple  differential  equations 

expressing  properties  of  curves  in  space  and  of  surfaces  on  which 

these  curves  lie,  or  which  they  cut  orthogonally  (as  in  Electro- 
statics the  Equipotential  Surfaces  cut  the  Lines  of  Force  ortho- 

gonally). The  ordinary  *  differential  equations  of  this  chapter  are 
closely  connected  with  the  partial  differential  equations  of  the 
next. 

Before  proceeding  further  the  student  should  revise  his  solid 

geometry.  We  need  in  particular  the  fact  that  the  direction-cosines 
of  the  tangent  to  a  curve  are 

(dx     dy     dz\ 

\ds'    ds'    ds/' 
i.e.  are  in  the  ratio  dx:dy:dz. 

Simultaneous  linear  equations  with  constant  coefficients  have 
already  been  discussed  in  Chapter  III. 

112.  The  simultaneous   equations  — r  =  rT  =  p-      These  equations 

express  that  the  tangent  to  a  certain  curve  at  any  point  (x,  y,  z) 

has  direction-cosines  proportional  to  (P,  Q,  R).  If  P,  Q,  and  R  are 
constants,  we  thus  get  a  straight  line,  or  rather  a  doubly  infinite 
system  of  straight  lines,  as  one  such  line  goes  through  any  point  of 

space.  If,  however,  P,  Q,  and  R  are  functions  of  x,  y,  and  z,  we  get 
a  similar  system  of  curves,  any  one  of  which  may  be  considered  as 

generated  by  a  moving  point  which  continuously  alters  its  direction 

*  i.e.  not  involving  partial  differential  cofficients. 133 
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of  motion.  The  Lines  of  Force  of  Electrostatics  form  such  a 

system.* 

Ex.  (i).  tejlji   (!) 

Obvious  integrals  are  x-z  =  a,      (2) 

y-z  =  b,      (3) 

the  equations  of  two  planes,  intersecting  in  the  line 

x-a    y-b    2 

— -7T-V     (4) 
which  by  suitable  choice  of  the  arbitrary  constants  a  and  b  can  be  made 

to  go  through  any  given  point,  e.g.  through  (/,  g,  h)  if  a=f-h  and 
b  =g  -  h. 

Instead  of  picking  out  the  single  line  of  the  system  that  goes  through 
one  given  point,  we  may  take  the  infinity  of  such  lines  that  intersect 

a  given  curve,  e.g.  the  circle  x2  +  y2  =  i,  2=0. 
The  equations  of  this  circle,  taken  together  with  (2)  and  (3),  give x  =  a, 

y=b, 
and  hence  az  +  b2  =  i   (5) 

This  is  the  relation  that  holds  between  a  and  b  if  the  line  is  to  inter- 

sect the  circle.     Eliminating  a  and  b  from  (2),  (3),  and  (5),  we  get 

(x-z)2  +  (y-z)2  =  4, 
the  elliptic  cylinder  formed  by  those  lines  of  the  system  which  meet 
the  circle. 

Similarly  the  lines  of  the  system  which  meet  the  curve 

<p(x,y)=:0,    2  =  0 
form  the  surface  <p(x-z,  y - z)  =  0. 

th      /--x  dx     dy      dz  ,_, 

Ex-<">-  7-0 -~x   (6) 
Obvious  integrals  are  x2  +  z2  =  a,    (7) 

y=b,     (8) 
a  right  circular  cylinder  and  a  plane  that  cuts  it  in  a  circle. 

The  differential  equations  therefore  represent  a  system  of  circles, 

whose  centres  all  lie  on  the  axis  of  y  and  whose  planes  are  all  perpen- 
dicular to  this  axis. 

One  such  circle  goes  through  any  point  of  space.  That  through 

(/>  9s  h)  is  x2  +  z2  =/2  +  h2,     y  =g. 
A  surface  is  formed  by  the  circles  of  the  system  that  intersect  a 

given  curve. 

*  The  equations  of  the  lines  of  force  are  dx  ̂ ~—dy /W-  =  rfz  'r>T>  wnere 
V  is  the  potential  function.  I  &         I  <%         '   Cz 
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If  the  given  curve  is  the  hyperbola 

£!_l_2_i    z-0 

42     B2
~ (7)  and  (8)  give,  for  a  circle  intersecting  this  hyperbola, 

x2  =  a,     y  =  b, 

and  hence  T"2_fi"2  =  1   ^ 

Eliminating  a  and  b  from  (7),  (8),  and  (9),  we  get  the  hyperboloid 

of  one  sheet,  x2  +  z2     ̂ 2 

~A2       fii"1, 
formed  by  those  circles  of  the  system  that  intersect  the  hyperbola. 

Similarly,  starting  from  the  curve  <p(x2,  y)=0,  2  =  0,  we  get  the 
surface  of  revolution  (p{x2  +  z2,  ?/)=0. 

113.  Solution  of  such  equations  by  multipliers.    If 

dx    dy    dz 

each  of  these  fractions  is  equal  to 

Idx  +  mdy  +  ndz  .    'f 

IP+mQ  +  nR   '  ."  * 
This  method  may  be  used  with  advantage  in  some  examples  to 

obtain  a  zero  denominator  and  a  numerator  that  is  an  exact 

differential.  {[My^,'^'S 
Ex.  to  dy_       te      /    L^ 

z(x  +  y)     z(x-y)     x2  +  y*  / 
Each  of  these  fractions 

x  dx  -  y  dy  -  z  dz 

xz(x  +  y)  -yz(x-y)  -z(x2  +  y2) 

xdx-ydy-zdz 
=  0  ; 

therefore  x  dx  -  y  dy  -  z  dz  =  0, 

i.e.    x2-y2-z2  =  a   (2) 

„.    .,    ,           ,    .        .         ydx  +  xdy  —  zdz 
(Similarly,  each  fraction  =  -   pp    ', 

therefore  ydx  +  xdy-zdz  =  0, 

i.e.     2xy-z2  =  b   (3) 

Thus  the  solution  of  equations  (1)  is  formed  by  the  system  of  quartic 
curves  in  space  arising  from  the  intersection  of  the  conicoids  (2)  and 
(3),  where  a  and  b  are  arbitrary. 
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Examples  for  solution. 

Obtain  the  system  of  curves,  defined  by  two  equations  with  an 
arbitrary  constant  in  each,  satisfying  the  following  simultaneous  dif- 

ferential equations.     Interpret  geometrically  whenever  possible. 

>i    a)  ̂ =^/=^.  »,  (2)    dx   =  dy  _  dz 
x      y      z'  \s        mz-ny    nx-lz    ly-mx' 

dx              dy  dz         \1a\  dx  _dy  _dz 

y2  +  z2-x2     -2xy  -2xz'              yz'  zx     xy' 
dx  _  dy  _  dz  xdx  dy  _  dz 

y  +  z    z  +  x    x  +  y'  z2-2yz-y2  y  +  z    y-z' 
(7)  Find  the  radius  of  the  circle  of  Ex.  2  that  goes  through  the 

point  (0,  -n,  m). 
(8)  Find  the  surface  generated  by  the  curves  of  Ex.  4  that  intersect 

the  circle  y2  +  z2  =  \,  x=0. 
(9)  Find  the  surface  generated  by  the  lines  of  Ex.  1  that  intersect 

the  helix  x2  +  y2  =  r2,  z  =  &tan-1-- y  x 

(10)  Find  the  curve  which  passes  through  the  point  (1,  2,  -1)  and 
is  such  that  at  any  point  the  direction-cosines  of  its  tangent  are  in  the 
ratio  of  the  squares  of  the  co-ordinates  of  that  point. 

114.  A  second  integral  found  by  the  help  of  the  first.  Consider  the 

equations  dx     dy  _  dz  m 
T  ~~^2  "3a;2 sin  (y +2x)   *  ' 

An  obvious  integral  is      y  +2x=a   (2) 
Using  this  relation,  we  get 

dx  _      dz 
1      3a;2  sin  a 

giving  z-x3  sin  a  =  b. 

Substituting  for  a,    z  -  x3  sin  (y  +  2x)  =  b   (3) 
Is  (3)  really  an  integral  of  (1)  ? 
Differentiating  (3), 

{dz  -  3x2dx  sin  (y  +  2a;)}  - x3  cos  (y  +  2x) .  {dy  +  2  dx}  =0, 
which  is  true  in  virtue  of  (1).     So  (3)  is  an  integral. 

Examples  for  solution. 

\j  m  dx_dy_        dz  V   (2)  dx_dy  _     dz 
V    K  '    1       3     5z  +  tan(?/-3a;)'  K  '    z       -z     z2  +  (y  +  x)2' 

/  (3)         dx        =  dy         ̂ dz  dx _dy _       dz 

^  xz(z2  +  xy)     -yz(z2  +  xy)    x4'      ̂          xy    y2     zxy-2x2' 
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115.  General  and  special  integrals  of  simultaneous  equations.  If 

w=aandu=6  are  two  independent  integrals  of  the  simultaneous 

equations  dx    dy    dz 

P~Q~R' 
then  <p(u,  v)=0  represents  a  surface  passing  through  the  curves  of 
the  system,  and  should  therefore  give  another  solution,  whatever 

the  form  of  the  function  (p. 
An  analytical  proof  of  this  is  reserved  for  the  next  chapter,  as 

its  importance  belongs  chiefly  to  partial  differential  equations. 

(j)(u,  v)=0  is  called  the  General  Integral.  Some  simultaneous 
equations  possess  integrals  called  Special,  which  are  not  included  in 
the  General  Integral. 

Examples  for  solution. 

(1)  In  the  Ex.  of  Art.  113  u  =  x2-y2-z2  and  v  =  2xy-z2,  so  the 
General  Integral  is  <p(x2-y2-z2,  2xy-z2)=0.  The  student  should 
verify  this  in  the  simple  cases  where 

<b(u.  v)=u-v     or     ik(u,  v)=   -. r  •  u-2 
(2)  Verify  that  for  the  equation 

dx  dy     dz 

l+^/(z-x-y)  =  ~l 
 =  ~2' the  General  Integral  may  be  taken  as 

</>{2y  -z,y  +  2y/{z  -x-y)}  =0, 
while  z  =  x  +  y  is  a  Special  Integral. 

116.  Geometrical  interpretation  of  the  equation 

Pdx+Qdy+Rdz  =  0. 

This  differential  equation  expresses  that  the  tangent  to  a  curve 

is  perpendicular  t«  a  certain  line,  the  direction-cosines  of  this  tangent 
and  line  being  proportional  to  (dx,  dy,  dz)  and  (P,  Q,  R)  respectively. 

But  we  saw  that  the  simultaneous  equations 

dx  _dy  _dz 

P  =  Q=R expressed  that  the  tangent  to  a  curve  was  parallel  to  the  line  (P,  Q,  R). 
We  thus  get  two  sets  of  curves.     If  two  curves,  one  of  each  set, 
intersect,  they  must  intersect  at  right  angles. 

Now  two  cases  arise.     It  may  happen  that  the  equation 

Pdx+Qdy+Rdz=0 
is  integrable.     This  means  that  a  family  of  surfaces  can  be  found, 
all  curves  on  which  are  perpendicular  to  the  curves  represented  by 
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the  simultaneous  equations  at  all  points  where  these  curves  cut  the 

surface.  In  fact,  this  is  the  case  where  an  infinite  number  of  surfaces 

can  be  drawn  to  cut  orthogonally  a  doubly  infinite  set  of  curves, 

as  equipotential  surfaces  cut  lines  of  force  in  electrostatics.  On  the 

other  hand,  the  curves  represented  by  the  simultaneous  equations 

may  not  admit  of  such  a  family  of  orthogonal  surfaces.  In  this 

case  the  single  equation  is  non-integrable. 

Ex.  (i) .  The  equation       dx  +  dy  +  dz=0 

integrates  to  x  +  y  +  z  =  c, 
a  family  of  parallel  planes. 

We  saw  in  Ex.  (i)  of  Art.  112  that  the  simultaneous  equations 

dx     dy    dz 

represented  the  family  of  parallel  lines 

x -  a    y-b    z 

The  planes  are  the  orthogonal  trajectories  of  the  lines. 

Ex.  (ii).  zdx-xdz=0, 
dx    dz     - 

i.e.   =  0 x      z 

integrates  to  z  —  cx, 

a  family  of  planes  passing  through  the  axis  of  y. 
We  saw  in  Ex.  (ii)  of  Art.  112  that  the  corresponding  simultaneous 

equations  
dxjj^dz^ 
z      0      -x 

represented  a  system  of  circles  whose  axes  all  lie  along  the  axis  of  y, 
so  the  planes  are  the  orthogonal  trajectories  of  the  circles. 

Examples  for  solution. 

Integrate  the  following  equations,  and  whenever  possible  interpret 
the  results  geometrically  and  verify  that  the  surfaces  are  the  orthogonal 
trajectories  of  the  curves  represented  by  the  corresponding  simultaneous 

( equations  : 

V  (1)  xdx  +  ydy  +  zdz  =  0. 

(2)  (y2  +  z2  -  x2)  dx  -  2xy  dy  -  2xz  dz  =  0.     [Divide  by  x2.  ] 

V(3)  yzdx  +  zxdy  +  xydz=0.    V(4)  (y  +  z)dx  +  (z  +  x)dy  +  (x  +  y)dz=0. 

V  (5)  z(ydx-xdy)—y2dz.        ]/  (6)  xdx  +  zdy  +  (y  +  2z)dz=0. 

117.  Method  of  integration  when  the  solution  is  not  obvious.  When 

an  integrable  equation  of  the  form 

Pdx+Qdy  +  Rdz=0 
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cannot  be  solved  by  inspection,  we  seek  for  a  solution  by  considering 

first  the  simpler  case  where  z  is  constant  and  so  dz=0* 

For  example,  yzdx  +  2zxdy  -3xydz=0  becomes,  if  z  is  constant, 
ydx+2xdy=0, 

giving  xy2  =  a. 
As  this  was  obtained  by  supposing  the  variable  z  to  be  constant, 

it  is  probable  that  the  solution  of  the  original  equation  can  be 

obtained  by  replacing  the  constant  a  by  some  function  of  z,  giving 

leading  to  y2dx  +  2xy  dy  -  J-  <fo*=  0. 

This  is  identical  with  the  original  equation  if 

Jf 
yz  _  2xy 

yz     2zx 

df  _3xy2 
dz       z 

df_3dz 

7"  *J f(z)=cz3, giving  the  final  solution  xy2  =  cz3. 
For  a  proof  that  this  method  holds  good  for\all  integrable.j 

equations,  see  Art.  119. 

Examples  for  solution. 

ls(l)  yz  log  zdx-zx  log  zdy  +  xy  dz=0. 
1/(2)  2yz  dx  +  zxdy-xy(l  +  z)dz  =  0. 

(3)  (2x2  +  2xy  +  2xz2  +  l)dx  +  dy  +  2zdz  =  0.  [N. B—  Assume  x  con- 
stant at  first.  ] 

(4)  (y2  +  yz)  dx  +  (zx  +  z2)  dy  +  (y2  -  xy)  dz  =  0. 
/-  (5)  (x2y  -y3-  y2z)  dx  +  (xy2  -  x2z  -  x3)  dy  +  (xy2  +  x2y)  dz=0. 

(6)  Show  that  the  integral  of  the  following  equation  represents  a 
family  of  planes  with  a  common  line  of  intersection,  and  that  these 
planes  are  the  orthogonal  trajectories  of  the  circles  of  Ex.  2  of  the  set 
following  Art.  113  : 

(mz  -  ny)  dx  +  (nx  -  Iz)  dy  +  (ty-  nix)  dz  ■—  0. 

118.  Condition  necessary  for  an  equation  to  be  integrable.     If 

Pdx+Qdy+Rdz=0   (1) 

has  an  integral  <f)(x,  y,  z)  =c,  which  on  differentiation  gives 

~  dx  +  ̂  dy  +  -_-  dz  -  0, 
ox  dy    J     dz 
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*»  «*-XP;    j*-X«;    g-XS. 

^(f-fHI-*|-°   <2) 

*(?-©♦*£-«£-   « 
Multiply  equations  (2),  (3),  and  (4)  by  P,  #,  and  R  respectively, 

and  add.     We  get 

^-|)+<-!)+<-!)=o. 
If  the  equation  (1)  is  integrable,  this  condition  must  be  satisfied. 

The  student  familiar  with  vector  analysis  will  see  that  if  P,  Q,  R 
are  the  components  of  a  vector  A,  the  condition  may  be  written 

A  .curl  A=0. 

Ex.  In  the  worked  example  of  the  last  article, 

yz  dx  +  2zx  dy  -  3xy  dz  =  0, 

P  =  yz>    Q  =  2z#,     R  =  -  3xy. 
The  condition  gives 

yz  (2x  +  3x)  +2zx(-  3y  -y)-  3xy  (z  -  2z)  =  0, 
i.e.    5xyz  -  8xyz  +  3xyz  =  0, 

which  is  true. 

Examples  for  solution. 

(1)  Show  that  the  equations  in  the  last  two  sets  of  examples 
satisfy  this  condition. 

(2)  Show  that  there  is  no  set  of  surfaces  orthogonal  to  the  curves 

given  by  dx__dy   dz 
z      x  +  y     1 

*  119.  The  condition  of  integrability  is  sufficient  as  well  as  necessary. 
We  shall  prove  that  the  condition  is  sufficient  by  showing  that 
when  it  is  satisfied  the  method  of  Art.  1 17  will  always  be  successful 
in  giving  a  solution. 

We  require  as  a  lemma  the  fact  that  if  P,  Q,  R  satisfy  the  con- 
dition, so  also  do  P1  =  XP,  Qx  -=XQ,  RX=XR,  where  X  is  any  function 

of  x,  y,  and  z.     We  leave  this  as  an  exercise  to  the  student. 

*  To  be  omitted  on  a  first  reading. 
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In  Art.  117  we  supposed  a  solution  of 

Pdx+Qdy=0 

obtained  by  considering  z  as  constant. 

Let  this  solution  be       F(x,  y,  z)  =a, 

which  gives  -=-  dx+-~-  dy=0, 

dFlj,    dFln    ̂  

Put  \P  =  PV  \Q  =  Qi,  XR  =  R1. 
The  next  step  was  to  replace  a  by  f(z),  giving 

F(x,y,z)=f(z),   (1) 

jai.  Ms      dF  i       idF    df\s      a 
and  thence  v—  dx  +  ~-  dy  + 1  » —  j-  Ydz=0, 

i.e.    pidx+Q1dy  +  \^-^  ]dz=0   (2) 
This  is  identical  with 

Pdx+Qdy  +  Rdz=0, 

«if  I-"-*   <3> 
In  the  example  of  Art.  117  we  got 

dfjxy*_3f(z) 
dz       z  z    ' 

the  a;  and  y  being  got  rid  of  by  virtue  of  the  equation  x2y  =f(z). 
What  we  have  to  prove  is  that  the  x  and  y  can  always  be  got  rid 

of  from  the  right-hand  side  of  equation  (3)  in  virtue  of  equation  (1). 
dF 

In  other  words,  we  must  show  that        -R,  involves  x  and  y 
dz only  as  a  function  of  F. 

Now  this  will  be  the  case  if  * 

dFd  IdF     „\     dFd  idF     .,)     ..,     ,.    „  ... 

dxdyUz  -M  -Tydx[dz  "**}  =° 
 ldentlCaU"V   (4) 

Now,  by  the  lemma,  the  relation  between  P,  Q,  R  leads  to  the 
similar  relation 

\dQx    dR,\         idR,    dP,)  fdPt    BQ,} 

Fn'dz'^yi+QlVdx~'dz~j+Kl\dJ,~dx~j  ~°' 

*  Edwards'  Differential  Calculus,  Art.  510. 
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also,  since  equation  (2)  is  integrable, 

x\dz     dy\dz     dz)i+Vl\dx\dz     TzJ"Wj 

\oz     dz/  [dy      dx) 

By  subtraction  of  these  last  two  equations  we  get 

PlBy\dz~  ~dz~Rl)  ~Ql  dx[dz  'Jz'^f 

-{M-«.}{f-iH   ,) 
But    .,,.£,    QlJl,    and    |(|)=i(|)-0, 

as  /  is  a  function  of  z  alone. 

Hence  (5)  reduces  to  (4). 

That  is,  ̂  —  J?x  can  be  expressed  as  a  function  of  F  and  z,  say 

\},(F,  z).     Hence  from  (1)  and  (3), 

If  the  solution  of  this  is  f=x  (z),  then  i^(x,  ?/,  z)=x(z)  is  a 
solution  of  Pdx+Qdy+Rdz=0, 

which  is  thus  proved  to  be  integrable  whenever  P,  Q,  R  satisfy  the 
condition  of  Art.  118. 

120.  The  non-integrable  single  equation.  When  the  condition  of 

integrability  is  not  satisfied,  the  equation 

Pdx+Qdy+Rdz=0   (1) 

represents  a  family  of  curves  orthogonal  to  the  family  represented 
by  the  simultaneous  equations 

dx     dy     dz 

P  =  Q=R' but  in  this  case  there  is  no  family  of  surfaces  orthogonal  to  the 
second  family  of  curves. 

However,  we  can  find  an  infinite  number  of  curves  that  lie  on 

any  given  surface  and  satisfy  (1),  whether  that  equation  is  integrable 
or  not. 

Ex.     Find  the  curves  represented  by  the  solution  of 

y  dx  +  (z  -  y)  dy  +  x  dz =0,    (1) 
which  lie  in  the  plane  2x-y-z  =  ]   (2) 

(It  is  easily  verified  that  the  condition  of  integrability  is  not  satisfied.) 
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The  method  of  procedure  is  to  eliminate  one  of  the  variables  and 

its  differential,  say  z  and  dz,  from  these  two  equations  and  the  differ- 
ential of  the  second  of  them. 

Differentiating  (2),  2dx  -dy-dz  =0. 
Multiplying  by  x  and  adding  to  (1), 

(y  +  2x)dx  +  (z-x-  y)  dy  =  0, 

or  using  (2),  (y  +  2x)  dx  +  (x  -  2y  - 1 )  dy  =  0, 

which  gives  xy  +  x2-y2-y  =  c2   (3) 
Thus  the  curves  of  the  family  that  lie  in  the  plane  (2)  are  the  sections 

by  that  plane  of  the  infinite  set  of  rectangular  hyperbolic  cylinders  (3). 
The  result  of  this  example  could  have  been  expressed  by  saying 

that  the  projections  on  the  plane  of  xy  of  curves  which  lie  in  the  plane 
(2)  and  satisfy  equation  (1)  are  a  family  of  concentric,  similar  and 
similarly  situated  rectangular  hyperbolas. 

Examples  for  solution. 

(1)  Show  that  there  is  no  single  integral  of  dz  =  2y  dx  +  x  dy. 
Prove  that  curves  of  this  equation  that  lie  in  the  plane  z  =  x  +  y  lie 

also  on  surfaces  of  the  family  (x  -  l)2{2y  -  1)  =c. 
(2)  Show  that  the  curves  of 

//       x      v  \ 

xdx  +  ydy  +  cyj\\  — a~  jb j  dz=0 

that  lie  on  the  ellipsoid 
x2  y2  z2  , 
—  +—  +  —  =  1 
a2     b2     c2 

lie  also  on  the  family  of  concentric  spheres 

x2  +  y2  +  z2  =  k2. 
(3)  Find  the  orthogonal  projection  on  the  plane  of  xz  of  curves 

which  lie  on  the  paraboloid  3z=x2  +  y2  and  satisfy  the  equation 
2dz  =  {x  +  z)  dx  +  y  dy. 

(4)  Find  the  equation  of  the  cylinder,  with  generators  parallel  to 

the  axis  of  ?/,  passing  through  the  point  (2,  1,  - 1),  and  also  through  a 
curve  that  lies  on  the  sphere  x2  +  y2  +  z2  =  4:  and  satisfies  the  equation 

(xy  +  2xz)  dx  -f  y2dy  +  (a:2  +  yz)  dz  =  0. 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  XI. 

,„  v  dx     dy     dz  £ni        dx  dy  dz 

xz     yz     xy'  y3x-2xi     2y/l-xzy     (dz(x'A-if)' 
...   dy  dz 

dx  dy  dz 

(4)  (z  +  z3)  cosxjt~{z  +  z3)  J  +  (1  -  z2)  (y  -  sin  r)  ~  =  0. 
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(5)  (l.+,.+l«)$+*» J+-J-1. 
(6)  Find  f(y)iff  (y)  dx  -zxdy-  xy  log  y  dz = 0  is  integrable. 

Find  the  corresponding  integral. 

(7)  Show  that  the  following  equation  is  not  integrable  : 

3y dx  +  (z- 3y)  dy  +  xdz=0. 

Prove  that  the  projection  on  the  plane  of  xy  of  the  curves  that 

satisfy  the  equation  and  lie  in  the  plane  2x  +  y  -  z  =  a  are  the  rectangular 
hyperbolas  x2  +  3xy-y2-ay  =  b. 

(8)  Find  the  differential  equations  of  the  family  of  twisted  cubic 

curves  y  =  ax2;  y2  =  bzx.  Show  that  all  these  curves  cut  orthogonally 
the  family  of  ellipsoids 

x2  +  2y2  +  3z2  =  c2. 

(9)  Find  the  equations  of  the  curve  that  passes  through  the  point 
(3,  2,  1)  and  cuts  orthogonally  the  family  of  surfaces  x  +  yz  =  c. 

(10)  Solve  the  following  homogeneous  equations  by  putting  x  =  uz, 
y  =  vz  : 

(i)  (x2  -y2-z2  +  2xy  +  2xz)  dx  +  (y2  -z2-x2  +  2yz  +  2yx)  dy 
+  (z2-x2-y2  +  2zx  +  2zy)dz=0; 

(ii)  (2xz  -  yz)  dx  +  (2yz  -  xz)  dy  -  (x2  -xy  +  y2)  dz  =  Q; 

(iii)  z2dx  +  (z2 - 2yz)  dy  +  (2y2 -yz- xz)  dz=0. 

(11)  Prove  that  if  the  equation 

P1dxl  +  P2dx2  +  P3dx3  +  P^dx^ = 0 

is  integrable,  then 

\oxt     oxsJ         \axr    oxt/         \oxs     oxr/ 

where  r,  s,  I  are  any  three  of  the  four  suffixes  1,  2,  3,  4. 

Denoting  this  relation  by  Crst  =  0,  verify  that 

^1^234  -  ̂2^134  +  ̂3^124  -  ̂ A23  =  0  identically, 
showing  that  only  three  of  these  four  relations  are  independent. 

Verify  that  these  conditions  are  satisfied  for  the  equation 

+  (x32  -  x1x2xi)  dx3  +  (#42  -  x1x2x3)  dxA=0. 

(12)  Integrate  the  equation  of  Ex.  11  by  the  following  process: 

(i)  Suppose  x3  and  xA  constant,  and  thus  obtain 

X-t        ~r  Xn  Ti/ziXaX*^  ==  CI, 

(ii)  Replace  a  by  f  (x3,  xA).     By  differentiation  and  comparison  with 

the  original  equation  obtain  -=  -,  =— ,  and  hence  /"and  the  solution 
'     ox3    dx4  J 
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(13)  Integrate  the  equation  of  Ex.  11  by  putting  x1=ux4,  x2  =  vx4, 
\x3  =  ivxA. 

(14)  Show  that  the  following  equation  satisfies  the  conditions  of 
integrability  and  obtain  its  integral  : 

y  sin  wdx  +  x  sin  w  dy  -  xy  sin  wdz-xy  cos  w  dw  =  0. 

(15)  Show  that  the  equation 

adx2  +  bdy2  +  cdz2  +  2fdydz  +  2gdzdx  +  2hdxdy  =  0 
reduces  to  two  equations  of  the  form 

Pdx  +  Qdy+Rdz  =  0 

if  <tic  +  2fgh  -  af2  -  bg2  -  ch2 =0.     (Cf .  a  result  in  Conies.) 
Hence  show  that  the  solution  of 

xyz  (dx2  +  dy2  +  dz2)  +x(y2  +  z2)  dydz  +  y  {z2  +  x2)  dz  dx 
+  z(x2  +  y2)  dxdy  =  0 

is  (x2  +  y*  +  zz-c)  {xyz  -  c)  =0.     (Cf.  Art.  52.) 

(16)  Show  that  the  condition  of  integrability  of 
Pdx+Qdy  +  Rdz  =  0   (1) 

implies  the  orthogonality  of  any  pair  of  intersecting  curves  of  the families 

dx/P  =  dy/Q  =  dz/R   (2) 

-    *ra-s-*/«-©.-*/s-g)   '*> 
Hence  show  that  the  curves  of  (3)  all  lie  on  the  surfaces  of  (1). 
Verify  this  conclusion  for  P=ny-mz,  Q  =  lz-nx,  R-mx-ly. 
(For  the  solutions  of  the  corresponding  equations,  see  earlier  examples 

in  this  chapter.) 

(17)  The  preceding  example  suggests  that  if  a  =  const.,  /3  =  const. 
are  two  integrals  of  equations  (3),  the  integral  of  equation  (1)  should 
be  expressible  in  the  form  /(a,  /3)=const.,  and  hence  that 

P  dx  +  Q  dy  +  R  dz 

should  be  expressible  as  Adu  +  B  dj3,  where  A  and  B  are  functions  of 
-  and  ft. 

Verify  that  for  the  case 

P  =  yz  log  z,     Q=  -zx  log  z,     R  =  xy, 

a  =  yz-,     ft  =  xz*\ogz,     A=-ft,     and     B  =  a. 
Hence  obtain  an  integral  of  (1)  in  the  form  a  =  cft, 

i.e.     y=cx\ogz. 



CHAPTER   XII 

PARTIAL  DIFFERENTIAL  EQUATIONS  OF  THE  FIRST 
ORDER.     PARTICULAR  METHODS 

121.  We  have  already  (in  Chap.  IV.)  discussed  the  formation  of 

partial  differential  equations  by  elimination  of  arbitrary  functions 
or  of  arbitrary  constants.  We  also  showed  how  in  certain  equations, 

of  great  importance  in  mathematical  physics,  simple  particular 
solutions  could  be  found  by  the  aid  of  which  more  complex  solutions 

could  be  built  up  to  satisfy  such  initial  and  boundary  conditions  as 

usually  occur  in  physical  problems. 

In  the  present  chapter  we  shall  be  concerned  chiefly  with  equa- 
tions of  geometrical  interest,  and  seek  for  integrals  of  various  forms, 

"  general,"  "  complete,"  and  "  singular,"  and  their  geometrical 
interpretations.  Exceptional  equations  will  be  found  to  possess 

integrals  of  another  form  called  "  special." 
122.  Geometrical  theorems  required.  The  student  should  revise 

the  following  theorems  in  any  treatise  on  solid  geometry  : 

(i)  The  direction-cosines  of  the  normal  to  a  surface  f  (x,  y,  2)  =0 
at  the  point  (x,  y,  z)  are  in  the  ratio 

dx  '  dy  '  dz  * Since 

dfjdf    dz  ,        dfldf    dz 

dxjdz=dx=¥>™T>      and       -dyli-d-y^>™y> 
this  ratio  can  also  be  written  p  :  q  :  - 1 . 

The  symbols  p  and  q  are  to  be  understood  as  here  defined  all 

through  this  chapter. 

(ii)  The  envelope  of  the  system  of  surfaces 

f(x,y,z,a,b)=0, 
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where  a  and  b  are  variable  parameters,  is  found  by  eliminating 
a  and  b  from  the  given  equation  and 

da    u'     db    U* 
The  result  may  contain  other  loci  besides  the  envelope  (cf. 

Chap.  VI.). 

123.  Lagrange's  linear  equation  and  its  geometrical  interpretation. 
This  is  the  name  applied  to  the  equation 

Pp+Qq=R,      (1) 

where  P,  Q,  R  are  functions  of  x,  y,  z. 
The  geometrical  interpretation  is  that  the  normal  to  a  certain 

surface  is  perpendicular  to  a  line  whose  direction-cosines  are  in  the 
ratio  P  :  Q  :  R.  But  in  the  last  chapter  we  saw  that  the  simultaneous 

equations  dx  _dy  _dz 
P'Q-R    (  } 

represented  a  family  of  curves  such  that  the  tangent  at  any  point 

had  direction-cosines  in  the  ratio  P  :Q:  R,  and  that  <p  (u,  v)=0 
(where  u=  const,  and  v=  const,  were  two  particular  integrals  of 
the  simultaneous  equations)  represented  a  surface  through  such 
curves. 

Through  every  point  of  such  a  surface  passes  a  curve  of  the 
family,  lying  wholly  on  the  surface.  Hence  the  normal  to  the 
surface  must  be  perpendicular  to  the  tangent  to  this  curve,  i.e. 

perpendicular  to  a  line  whose  direction-cosines  are  in  the  ratio 
P  :  Q  :  R.  This  is  just  what  is  required  by  the  partial  differential 

equation. 
Thus  equations  (1)  and  (2)  are  equivalent,  for  they  define  the 

same  set  of  surfaces.  When  equation  (1)  is  given,  equations  (2)  are 
called  the  subsidiary  equations. 

Thus  cp  (u,  v)=0  is  an  integral  of  (1),  if  u  =  const,  and  v  =  const, 
are  any  two  independent  solutions  of  the  subsidiary  equations  (2) 

and  cf>  is  any  arbitrary  function.  This  is  called  the  General  Integral 

of  Lagrange's  Linear  Equation. 

Ex.  (i).  p  +  q  =  l. 

The  subsidiary  equations  are  those  discussed  in  Ex.  (i)  of  Art.  112, 
viz.  dx    dy    dz 

T  =  T  =  T' representing  a  family  of  parallel  straight  lines. 
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Two  independent  integrals  are 
x-z-at 

y-z  =  b, 
representing  two  families  of  planes  containing  these  straight  lines. 

The  general  integral  is  <p(x-z,  y-z)=0,  representing  the  surface 
formed  by  lines  of  the  family  passing  through  the  curve 

(p(x,y)=0,    2=0. 
If  we  are  given  a  definite  ciirve,  such  as  the  circle 

x2  +  y2  =  i,    z*=0, 

we  can  construct  a  corresponding  particular  integral 

(x-z)*  +  (y-z)*  =  l, 
the  elliptic  cylinder  formed  by  lines  of  the  family  meeting  the  given 
circle. 

Ex.  (ii).  zp  =  -x.     [Cf.  Ex.  (ii)  of  Art.  112.] 
The  subsidiary  equations  are 

dx    cly        dz 

2       0  x ' 
of  which  two  integrals  are    x2  +  z2  =  a,    y  =  b. 

The  general  integral  <p(x2  +  z2,  y)=0  represents  the  surface  of 
revolution  formed  by  curves  (circles  in  this  case)  of  the  family  inter- 

secting the  curve  0  (x*}  y)  =  o,    2=0. 

Ex.  (iii).  Find  the  surfaces  whose  tangent  planes  cut  off  an  intercept 
of  constant  length  k  from  the  axis  of  z. 

The  tangent  plane  at  (x,  y,  z)  is 

Z-z=p(X-x)+q(Y-y). 

Putting  A'  =  Y  =  0,        Z  =  z-px-  qy  =  k. 
The  subsidiary  equations  are 

dx    dy      dz 

x      y     z-k 
of  which  y  —  ax,  z-k  —  bx,  are  integrals. 

The  general  integral  <p(~,  -  —J=0  represents  any  cone  with  it3 

vertex  at  (0,  0,  k),  and  these  surfaces  clearly  possess  the  desired  property. 

Examples  for  solution. 

Obtain  general  integrals  of  the  following  equations.  [Cf.  the  first 
set  of  examples  in  Chap.  XL] 

(1)  xp  +  yq  =  z. 

(2)  (»iz  -  ny) p  +  (».r  -  Iz  <}  =  ly-  mx. 

(3)  {if  +  z2  -  x2) j>  -  2xy g  +  2xz=  0. 

(4)  yzp  +  zxq  =  xy. 

(5)  (y  +  z)p  +  (z  +  x)q  =  x  +  y. 
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(6)  (z2 - 2yz -y2)p  +  (xy  +  xz)q  =  xy  - xz. 
(7)  p  +  3q  =  5z  +  tan(y-3x). 

(8)  zp-zq  =  z2  +  (y  +  x)2. 
(9)  Find  a  solution  of  Ex.  (1)  representing  a  surface  meeting  the 

parabola  y2  =  4:X,  2  =  1. 
(10)  Find  the  most  general  solution  of  Ex.  (4)  representing  a  conicoid. 

(11)  Show  that  if  the  solution  of  Ex.  (6)  represents  a  sphere,  the 
centre  is  at  the  origin. 

(12)  Find  the  surfaces  all  of  whose  normals  intersect  the  axis  of  z. 

124.  Analytical  verification  of  the  general  integral.  We  shall  now 

eliminate  the  arbitrary  function  <p  from  <p(u,  v)=0,  and  thus 
verify  analytically  that  this  satisfies  Pp  +Qq=R,  provided  u  =  a  and 

v  =  b  are  two  independent*  integrals  of  the  subsidiary  equations 
dx  __dy  _dz 

P~Q~R' 
Differentiate  0  (u,  v)=0  partially  with  respect  to  x,  keeping  y 

constant ;  z  will  vary  in  consequence  of  the  variation  of  x.    Hence 

we  get  fyf9^    du<k\     dj>(dv    dv  dz\ 
du\dx     dz  dx)     dv^dx     dzdx)       ' 

9r/>  (du       du\     dcp  /dv       dv 

~du\dx        dz)     dv\dx    ̂   dz. 
0.    .,     ,  drh/du       du\     d(h/dv       dv\     _ 

Similarly        £(^  +  f  s )  +  £  (^  +  ,  jj  -  0. 

Eliminating  the  ratio  -zj-  :  ~  from  these  last  two  equations, 

(du       du\  (dv        dv\     fdu        du\  (dv       dv 

\Fy+qTz){dx+^Tz)^\¥x+^^J\dlj  +  (Idz 
/du  dv     du  dv\        /du  dv     du  dv\ 

\dydz     dzdy)  *      \dzdx     dxdz)  * 

_  du  dv     du  dv 

dx  dy    dydx   
But  from  u  =a,      -_   dx  +  _   dy  +    '  dz  =  0, dx         dy   J     dz 

and  hence  from  the  subsidiary  equations,  of  which  u  =a  is  an  integral, 

„  du     ~du     „  du     . 
Pw-+Q-^-+R-a-  =0. dx        dy        oz 

*If  u  and  v  are  not  independent,  (^^i -^^\  and  the  other  two  similar 
\  cy  dz     dz  ay  I 

expressions  all  vanish  identically  (Edwards'  Differential  Calculus,  Art.  510),  which 
reduces  equation  (1)  to  0=0 

(1) 
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pg+eg+*|=o. Hence 

P   n    7?  -  /^u  ̂v    ̂u  ̂v\  •  ̂M  ̂v    ̂u  ̂v\  •  ̂"  ̂v    ̂u  ̂v\  • 

'     '        \dy  dz    dz  dy)    \dzdx     dx  dzJ  '  \dx  dy    By  dx/  ' 
so  (1)  becomes  Pp  +  Qq=R,  the  equation  required. 

125.  Special  integrals.  It  is  sometimes  stated  that  all  integrals 

of  Lagrange's  linear  equation  are  included  in  the  general  integral 
<p  (u,  v)  =  0.     But  this  is  not  so. 

For  instance,  the  equation 

p-q  =  2y/z 
has  as  subsidiary  equations 

dx  _  dy  _   dz 
T=^l_2Vz* 

Thus  we  may  take  u=x+y,v=x-  s/z,  and  the  general  integral  as 

<p(x+y,  x-  <y/z)=Q. 
But  2=0  satisfies  the  partial  differential  equation,  though  it  is 

obviously  impossible  to  express  it  as  a  function  of  u  and  v. 

Such  an  integral  is  called  special.  It  will  be  noticed  that  in  all 
the  examples  given  below  the  special  integrals  occur  in  equations 
involving  a  term  which  cannot  be  expanded  in  series  of  positive 
integral  powers. 

In  a  recent  paper  M.  J.  M.  Hill*  has  shown  that  in  every  case 
where  special  integrals  exist  they  can  be  obtained  by  applying  a 

suitable  method  of  integration  to  the  Lagrangian  system  of  sub- 

sidiary equations  (see  Examples  5  and  6  below).  He  also  under- 
takes the  re-classification  of  the  integrals,  the  necessity  of  which 

task  had  been  pointed  out  by  Forsyth. f 

Examples  for  solution. 

Show  that  the  following  equations  possess  the  given  general  and 
special  integrals  : 

(1) V +  2qzh  =  3; s;    </>(•£- 
z-\  y-z* 

=  0 

>    ~ 

=  0. 

(2) V 
+  q{l+(z- 

-y)*}=i; 
(j){x-Z, 

2x  +  3(c 

-y)1}; 

z  = 

y- 

(3)  {1 
+  y/(z-x z  =  x  +  y. 

-y)}p+<i 

=  2;    <p{ 

2//- 

z,  y 

f2V(* 

-X 

-y)}=0; 

[Chrj 

•stal.] 

*  Proc.  Lot ulon  Math. Soc. 1017 

t  Proc.  Lo> don  Math. 
Soc. 1905 0. 



PARTICULAR  METHODS  151 

(4)  By  putting  (z-x-y)*  =  w  in  Chrystal's  equation  (Ex.  3),  obtain 

dy 

This  
shows  

that  
z-x-y=0  

is  a  solution  

of  the  
original  

equation. [Hill.] 

(5)  Show  that  the  Lagrangian  subsidiary  equations  of    Chrystal's 
equation  (Ex.  3)  may  be  written 

dx     ,      .  A      dz     „ 

and  deduce  that  j-{z-x-y)  =  -(z-x- y)  , 

of  which  z  -  x  -  y  =  0  is  a  particular  solution.  [Hill.] 

(6)  Obtain  the  general  and  special  integrals  of  the  equation 

p-q  =  2\/z 

by  imitating  Hill's  methods  as  given  in  Exs.  4  and  5. 

126.  The    linear    equation    with    n    independent   variables.     The 

general  integral  of  the  equation 

PlPl  +  P2P*  +  P&3  +  ■■■+  PnVn  =  R, 

where  p1=^-,  p2=^—,  •••  etc.,  and  the  P's  and  R  are  functions 

of  the  x's  and  z,  is        <p(u1}  w2<  u3,  ...  un)  =  0, 
where  %  =  const.,  u2  =  const.,  ...  etc.,  are  any  n  independent  integrals 
of  the  subsidiary  equations 

ttwi  tviX'o  U/Juo  iX&t 

This  may  be  verified  as  in  Art.  124.  The  student  should  write 

out  the  proof  for  the  case  of  three  independent  variables. 

Besides  this  general  integral,  special  integrals  exist  for  excep- 
tional equations,  just  as  in  the  case  of  two  independent  variables. 

Examples  for  solution. 

(1)  P2  +  P3  =  1+PV 

(2)  x1pl  +  2x2p2  +  3x3p3  +  4:xip4  =  Q. 

(3)  (x3- x2)px  +  x2p2- x3p3  =  x2(xl  +  x3)  - x22. 

(4)  x2x3px  +  x3x1p2  +  xlx2p3  +  x1x2x3=0. 

(5)  p1  +  x1p2  +  x1x2p3  =  xlx2x3\/z. 

(6)  px  +p2  +  p3{l  +  \/{z  -  *i  -  J' 2  -  a3)}  =  3. 
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Pf  7W  "pic 127.  The  equation  P  =-  +Q  =-  +R  =-  -0.     If  P,  Q,  R  are  functions ox       dy       oz 

of  x,  y,  z  but  not  of  /,  the  equation  can  be  viewed  from  two  different 
aspects. 

Consider,  for  example, 

I-g+V*I=o   (i) 
We  may  regard  this  as  equivalent  to  the  three-dimensional 

equation  p-q  =  2y/z,     (2) 

of  which  <p(x+y,  x-  \/z)=0  is  the  general  integral  and  2=0  a 
special  integral. 

On  the  other  hand,  regarding  (1)  as  an  equation  in  four  variables, 

we  get  the  general  integral 

<t>(f>to+V,  x-\/z)=0, 
which  is  equivalent  to  f=\fs{x  +y,  x-  y/z),  where  \[s  is  an  arbitrary 
function,  but  if 

Thus/  =  z  is  not  an  integral  of  (1),  although  f  =  z=0  certainly 
gives  a  solution. 

In  general  it  may  be  proved  that 

regarded  as  four-dimensional,  where  P,  Q,  R  do  not  contain/,  has 

no  special  integrals.*  A  similar  theorem  is  true  for  any  number  of 
independent  variables. 

Examples  for  solution. 

(1)  Verify  that  if  f=x,  f=0  is  a  surface  satisfying 

V*Iwyg+V*f=o, 
and  hence  that  this  differential  equation,  interpreted  three-dimension- 
ally,  admits  the  three  special  integrals  x=0,  y  =  0,  z=Q  and  the  general 
integral  <j>(\/z-  \/x,  y/z  -  y/y)  =  0. 

(2)  Show  that  the  general  integral  of  the  last  example  represents 
surfaces  through  curves  which,  if  they  do  not  go  through  the  origin, 
either  touch  the  co-ordinate  planes  or  lie  wholly  in  one  of  them. 

[Hint.     Prove  that  -r  =  \l\   ),  and  that  dr,/ds  =  0  if  x=0, 
ds      \  \x  +  y  +  zJ  ' 

unless  x,  y,  z  are  all  zero.] 

*  See  Appendix  B. 
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(3)  Show  that  s/x  -  +  y/y  «-  =0,  regarded  two-dimensionally,  repre- 

sents a  family  of  parabolas  \/y  =  yjx  +  c,  and  their  envelope,  the 
co-ordinate  axes  x*=Q,   y=0;     while  regarded  three-dimensionally  it 

represents  the  surfaces  z  =  <p(y*  ~ar). 
128.  Non-linear  equations.  We  shall  now  consider  equations  in 

which  p  and  q  occur  other  than  in  the  first  degree.  Before  giving 
the  general  method  we  shall  discuss  four  simple  standard  forms,  for 

which  a  "  complete  integral  "  (i.e.  one  involving  two  arbitrary 
constants)  can  be  obtained  by  inspection  or  by  other  simple  means. 

In  Arts.  133-13.5  we  shall  show  how  to  deduce  general  and  singular 
integrals  from  the  complete  integrals. 

129.  Standard  I.  Only  p  and  q  present.  Consider,  for  example, 

this  equation  q  =3jo2. 
The  most  obvious  solution  is  to  take  p  and  q  as  constants  satisfying 

the  equation,  say  p  =  a,  q—  3a2. 
Then,  since        dz=pdx  +q  dy  =  adx+3a2  dy, 

z  =  ax  +  3a2y  +  c. 
This  is  the  complete  integral,  containing  two  arbitrary  constants 

a  and  c. 

In  general,  the  complete  integral  oif(p,  q)  =  0  is 
z  =  ax+by  +  c, 

where  a  and  b  are  connected  by  the  relation /(a,  6)  =0. 
Examples  for  solution. 

Find  complete  integrals  of  the  following  : 

(1)  p  =  2q2  +  l.  (2)  p2  +  q2  =  l. 
(3)  p  =  e*.  (4)  pY  =  l. 

(5)  2?2-92  =  4.  (6)  pq  =  v  +  q. 

130.  Standard  II.     Only  p,  q,  and  z  present.     Consider  the  equation 

z2(ph2+q2)=l   (1) 
As  a  trial  solution  assume  that  z  is  a  function  of  x  +  ay 

(  =u,  say),  where  a  is  an  arbitrary  constant. 

'     ,  dz  _dz    du  _dz  _dz  _dz    du  _    dz 
dx    du    dx    du'  dy    du    dy       du' 

/dz\2 Substituting  in  (1),    z2(~)  ̂   +  r{2)  =  1' 
du  „         £ 

i.e.     -j-  =  ±Z  .-  +a2)  , dz 

i.e.     u  +  b  =  ±l  (z2  +  a2Y, 

i.e.     9(x +ay +b)2  =  (z2 +a2)3. 
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In  general,  this  method  reduces  f(z,p,  q)=0  to  the  ordinary 
differential  equation 

/(*> 

dz       dz\_~ 
du '     duJ 

Examples  for  solution. 

Find  complete  integrals  of  the  following  : 

(1)  iz  =  pq.  (2)  z2  =  l+p2  +  q2. 

(3)  q2  =  z2p2(\  -p2).  (4)  f  +  qA  =  21z. 

(5)  p(z  +  p)+q  =  0.  (6)  p2  =  zq. 

L31.  Standard  III.    f(x,  p)=F(y,  q).    Consider  the  equation 

p  -3x2=q2  -y. 
As  a  trial  solution  put  each  side  of  this  equation  equal  to  an 

arbitrary  constant  a,  giving 

p=3x2+a;     q  =  \/(y  +a). 

But  dz=pdx+qdy 

-  (3x2  +a)dx  +  \/(y  +a)dy  ; 

t  h  er ef or e  z  =  x3  +  ax  +  §  (y  +  a)'-  +  b, 
which  is  the  complete  integral  required. 

Examples  for  solution. 

Find  complete  integrals  of  the  following  : 

(1)  p2  =  q  +  x.  (2)  pq=xy. 

(3)  yp  =  2yx  +  logq.  (4)  q  =  xtjp2. 

(5)  pev  =  qex.  (6)  q  (p  -  cos  x)  =  cos  y. 

132.  Staftd3t€4\L._Paftial  differential  equations  analogous  to  Clair- 
aut's  form.    In  Chap.  VI.  we  showed  that  the  complete  primitive  of 

y=px+f(p) 

was  y  —  cx  +f(c),  a  family  of  straight  lines. 
Similarly  the  complete  integral  of  the  partial  differential  equation 

z=px+qy+f(p,q) 

is  z=ax+by  +f(a,  b),  a  family  of  planes. 
For  example,  the  complete  integral  of 

z=px  +qy  +p2  +q2 

is  z  —  ax  +by  +  a2  +  b2. 

Corresponding  to  the  singular  solution  of  Clairaut's  form,  giving 
the  envelope  of  the  family  of  straight  lines,  we  shall  find  in  the  next 



PARTICULAR  METHODS  155 

article  a  "  singular  integral  "  of  the  partial  differential  equation, 
giving  the  envelope  of  the  family  of  planes. 

Examples  for  solution. 

(1)  Prove  that  the  complete  integral  of  z=px  +  qy-2p-3q  repre- 
sents all  possible  planes  through  the  point  (2,  3,  0). 

(2)  Prove  that  the  complete  integral  of  z=px  +  qy  +  <\/(p2  +  q2  +  l) 
represents  all  planes  at  unit  distance  from  the  origin. 

(3)  Prove  that  the  complete  integral  of  z=px  +  qy+pq/(pq-p-q) 
represents  all  planes  such  that  the  algebraic  sum  of  the  intercepts  on 
the  three  co-ordinate  axes  is  unity. 

133.  Singular  Integrals.  In  Chap.  VI.  we  showed  that  if  the 

family  of  curves  represented  by  the  complete  primitive  of  an  ordinary 
differential  equation  of  the  first  order  had  an  envelope,  the  equation 
of  this  envelope  was  a  singular  solution  of  the  differential  equation. 

A  similar  theorem  is  true  eoncerning  the  family  of  surfaces  repre- 
sented by  the  complete  integral  of  a  partial  differential  equation  of 

the  first  order.  If  they  have  an  envelope,  its  equation  is  called  a 

"  singular  integral."  To  see  that  this  is  really  an  integral  we  have 
merely  to  notice  that  at  any  point  of  the  envelope  there  is  a  surface 
of  the  family  touching  it.  Therefore  the  normals  to  the  envelope 

and  this  surface  coincide,  so  the  values  of  p  and  q  at  any  point  of 
the  envelope  are  the  same  as  that  of  some  surface  of  the  family,  and 

therefore  satisfy  the  same  equation. 

We  gave  two  methods  of  finding  singular  solutions,  namely  from 

the  c-discriminant  and  from  the  ̂ -discriminant,  and  we  showed  that 

these  methods  gave  also  node-loci,  cusp-loci,  and  tac-loci,  whose 
equations  did  not  satisfy  the  differential  equations.  The  geometrical 

reasoning  of  Chap.  VI.  can  be  extended  to  surfaces,  but  the  dis- 
cussion of  the  extraneous  loci  which  do  not  furnish  singular  integrals 

is  more  complicated.*  As  far  as  the  envelope  is  concerned,  the 
student  who  has  understood  Chap.  VI.  will  have  no  difficulty  in 
understanding  that  this  surface  is  included  among  those  found  by 
eliminating  a  and  b  from  the  complete  integral  and  the  two  derived 

equations  f(x,y,z,a,b)=0, 

da  
U' 

db 

*  See  a  paper  by  M.  J.  M.  Hill,  Phil.  Trans.  (A),  1802. 
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or  by  eliminating  p  and  q  from  the  differential  equation  and  the 
two  derived  equations 

F(x,  y,  z,  p,  q)  =0, 
dF  =0 

dp  
u' dF 

■  Bq 

In  any  actual  example  one  should  test  whether  what  is  apparently 

a  singular  integral  really  satisfies  the  differential  equation.  . 

Ex.  (i).  The  complete  integral  of  the  equation  of  Art.  132  was 

z  =  ax  +  by  +  a2  +  b2. 
Differentiating  with  respect  to  a,  0  =  x         +  2a. 

Similarly  0=  y         +26. 

Eliminating  a  and  b,  4z  =  -  (x2  +  y2). 
It  is  easily  verified  that  this  satisfies  the  differential  equation 

z=px  +  qtj  +  p2  +  q2 
and  represents  a  paraboloid  of  revolution,  the  envelope  of  all  the  planes 
represented  by  the  complete  integral. 

Ex.  (ii).  The  complete  integral  of  the  equation  of  Art.  130  was 

9{x  +  ay  +  b)2=  {z2  +  a2f   (1) 
Differentiating  with  respect  to  a, 

18y{x  +  ay  +  b)  =  6a{z2  +  a2)2   (2) 
Similarly  18(x  +  ay  +  b)=0   (3) 

Hence  from  (2),  a  =  0   (4) 

Substituting  from  (3)  and  (4)  in  (1),  z=0. 

But  z  =  0  gives  p  =  q  =  0,  and  these  values  do  not  satisfy  the  differ- 
ential equation  z2(p2z2  +  q2)  =  l. 

Hence  2  =  0  is  not  a  singular  integral. 

Ex.  (iii).  Consider  the  equation     p2  =  zq. 
Differentiating  with  respect  to  p,  2p=0. 
Similarly  0  =  z. 
Eliminating  p  and  q  from  these  three  equations,  we  get 

2  =  0. 

This  satisfies  the  differential  equation,  so  it  really  is  a  singular 
integral. 

But  it  is  derivable  by  putting  6  =  0  in 

z  =  be"x+ahJ, 
which  is  easily  found  to  be  a  complete  primitive. 

So  z-—0  is  both  a  singular  integral  and  a  particular  case  of  the 
complete  integral. 
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Examples  for  solution. 

Find  the  singular  integrals  of  the  following  : 

(1)  z=px  +  qy  +  logpq.  (2)  z=px  +  qy  +  p2  +  pq  +  q2. 

(3)  z=>px  +  qy  +  %p2q2.  (4)  z=px  +  qy+p/q. 

(5)  iz  =  pq.  (6)  z2  =  l+p2  +  q2.        (7)  p3  +  ?3  =  27z. 
(8)  Show  that  no  equation  belonging  to  Standard  I.  or  III.  has  a 

singular  integral.     [The  usual  process  leads  to  the  equation  0  =  1.] 

(9)  Show  that  z=0  is  both  a  singular  integral  and  a  particular  case 
of  a  complete  integral  of  q2  =  z2p2(l  -p2). 

134.  General  Integrals.  We  have  seen,  in  Ex.  (i)  of  the  last 

article,  that  all  the  planes  represented  by  the  complete  integral 

z=ax+by  +  a2  +b2      (1 ) 

touch  the  paraboloid  of  revolution  represented  by  the  singular 

integral  ±z  =  _(xz+y2y  ■   (2) 
Now  consider,  not  all  these  planes,  but  merely  those  perpendicular 

to  the  plane  y  =0.     These  are  found  by  putting  6=0  in  (1),  giving 

z—ax  +  a2, 

of  which  the  envelope  is  the  parabolic  cylinder 

4z  =  -  x2   (3) 

Take  another  set,  those  which  pass  through  the  point  (0,  0,  1). 

From(l),  l=a2+62, 

so  (1)  becomes  z=ax±y\/(l  -a2)  +1, 
of  which  the  envelope  is  easily  found  to  be  the  right  circular  cone 

(z-l)2  =  x2+y2   (4) 

In  general,  we  may  put  b=f(a),  where/  is  any  function  of  a, 

giving  z=ax+yf(a)+a?  +  {f(a)}2   (5) 

The  envelope  of  (5)  is  found  by  eliminating  a  between  it  and 
the  equation  found  by  differentiating  it  partially  with  respect  to  a. 

i.e.    0=x+yf'{a)+2a+2f{a)f(a)   (6) 
If  /  is  left  as  a  perfectly  arbitrary  function,  the  eliminant  is 

called  the  "  general  integral  "  of  the  original  differential  equation. 
Fjquations  (3)  and  (4)  are  particular  integrals  derived  from  the 

general  integral. 

AVe  may  define  the  general  integral  of  a  partial  differential 

equation  of  the  first  order  as  the  equation  representing  the  aggregate 

of  the  envelopes  of  every  possible  singly-infinite  set  of  surfaces  that 
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can  be  chosen  out  of  the  doubly-infinite  set  represented  by  the 
complete  integral.  These  sets  are  denned  by  putting  b  -f  (a)  is 
the  complete  integral. 

It  is  usually  impossible  to  actually  perform  the  elimination  of 

a  between  the  two  equations  giving  the  envelope,  on  account  of  the 
arbitrary  function /and  its  differential  coefficient.  The  geometrical 
interest  lies  chiefly  in  particular  cases  formed  by  taking  /  as  some 
definite  (and  preferably  simple)  function  of  a. 

135.  Characteristics.  The  curve  of  intersection  of  two  con- 

secutive surfaces  belonging  to  any  singly-infinite  set  chosen  from 
those  represented  by  the  complete  integral  is  called  a  characteristic. 

Now  such  a  curve  is  found  from  the  equation  of  the  family  of 
surfaces  by  the  same  two  equations  that  give  the  envelope.  For 
instance,  equations  (5)  and  (6)  of  the  last  article,  for  any  definite 

numerical  values  of  a,f(a),  and /'(a),  define  a  straight  line  (as  the 
intersection  of  two  planes),  and  this  straight  line  is  a  characteristic. 

The  characteristics  in  this  example  consist  of  the  triply-infinite  set 
of  straight  lines  that  touch  the  paraboloid  of  revolution  (2). 

The  parabolic  cylinder  (3)  is  generated  by  one  singly-infinite  set 
of  characteristics,  namely  those  perpendicular  to  the  plane  y=0, 
while  the  cone  (4)  is  generated  by  another  set,  namely  those  that 
pass  through  the  fixed  point  (0,  0,  1).  Thus  we  see  that  the  general 

integral  represents  the  aggregate  of  all  such  surfaces  generated  by  the 
characteristics. 

If  a  singular  integral  exists,  it  must  be  touched  by  all  the  char- 
acteristics, and  therefore  by  the  surfaces  generated  by  particular 

sets  of  them  represented  by  the  general  integral.  It  is  easily  verified 
that  the  parabolic  cylinder  and  right  circular  cone  of  the  last  article 
touch  the  paraboloid  of  revolution. 

136.  Peculiarities  of  the  linear  equation.     To  discuss  the  linear 

equation  Pp+Qg^R   (1) 
on  these  lines,  suppose  that      u  =  const. 
and  v  =  const, 

are  two  independent  integrals  of  the  subsidiary  equations.* 
Then  it  is  easily  verified  that  an  integral  of  (1)  is 

■u  +av+b=0   (2) 

*  >Since  u  and  v  are  independent,  at  least  one  of  them  must  contain  z.  Let 
this  one  be  u.  We  make  this  stipulation  to  prevent  it  +av  +  b  being  a  function  of 
x  and  y  alone,  in  which  case  it  +av  +  b=0  would  make  terms  in  (1)  indeterminate, 
instead  of  definitely  satisfying  it  in  the  ordinary  way. 
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This  may  be  taken  as  the  complete  integral.  The  general 

integral  is  found  from 

\u+av+f(a)=0,   (3) 

«+/»=0   (4) 

From  (4),  a  is  a  function  of  v  alone, 

say  a  =  F(v). 

Substituting  in  (3),  u  =a  function  of  v, 

say  u  =  \}s(v), 

which  is  equivalent  to  the  general  integral  </>(«,  v)=0  found  at  the 
beginning  of  the  chapter. 

The  linear  equation  is  exceptional  in  that  its  complete  integral 

(2)  is  a  particular  case  of  the  general  integral.  Another  peculiarity 

is  that  the  characteristics,  which  are  here  the  curves  represented  by 

the  subsidiary  equations,  are  only  doubly-infinite  in  number  instead 

of  triply-infinite.  Only  one  passes  through  a  given  point  (in  general), 

whereas  in  the  non-linear  case,  exemplified  in  the  last  article,  an 
infinite  number  may  do  so,  forming  a  surface. 

Examples  for  solution. 

(1)  Find  the  surface  generated  by  characteristics  of 

z = px  +  qy  +  p2  +  pq  +  q2 
that  are  parallel  to  the  axis  of  x.  Verify  that  it  really  satisfies  the 
differential  equation  and  touches  the  surface  represented  by  the  singular 
integral. 

(2)  Prove  that  z2  =  4xy  is  an  integral  of 
z=px  +  qy  +  log  pq 

representing  the  envelope  of  planes  included  in  the  complete  integral 
and  passing  through  the  origin. 

(3)  Prove  that  the  characteristics  of  q  =  3p2  that  pass  through  the 
point  (-1,  0,  0)  generate  the  cone  (x  +  l)2  +  12yz  =  0. 

(4)  What  is  the  nature  of  the  integral  (y  +  1  )2  +  \xz  =  0of  the  equation 

'.     4      z  =  px  +  qy  +  p/q  ? 

(5)  Show  that  either  of  the  equations 

z  =  {x  +  y) 2  +  ax  +  by, 

.  mx*  +  ny* 
z  =  (x  +  y)2  +   — 

J  x  +  y 

may  be  taken  as  the  complete  integral  of  a  certain  differential  equation, 
and  that  the  other  may  be  deduced  from  it  as  a  particular  case  of  the 
general  integral,  [London.] 
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(6)  Show  that  z  =  (x  +  a)2eby  is  a  complete  integral  of  the  differential 
equation  p2  =  ±zeqylz. 

(  xv  \2~v 
Show  that  y2z  =  i[~-)      

 
is  part  of  the  general  integral  of  the 

same  equation,  and  deduce  it  from  the  above  given  complete  integral. 
[London.] 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  XII. 

(1)  z=px  +  qy-p2q.  (2)  0=px  +  qy-(px  +  z)2q. 

(3)  z {z2  +  xy)  (px - qy)  =  xi.  (4)  p*-q*=3x- 2y. 

(5)  p12  +  2x2p2  +  x32p3  =  0.  (6)  xspL  +  xtf>2  +  Xjp3=0. 

(7)  p3  +  q*-3pqz  =  0.  (8)  pS  +  p22+p32  =  ±z. 

(9)  px+Pi  +  pz  =  iz.  (10)  t>2  + 6^  +  2? +  4=0. 

(11)  z2p2y  +  6zpxy  +  2zqx2  +  4x2y  =  0.       (12)  zpy2  =  x(y2  +  z2q2). 

(13)  p2z2  +  q2  =  p2q.  (14)  (z-px-qy)xzy2  =  q2zxz-3pH2y2. 

(15)  Find  the  particular  case  of  the  general  integral  of  p  +  q=pq 
that  represents  the  envelope  of  planes  included  in  the  complete  integral 
and  passing  through  the  point  (1,  1,  1). 

(16)  Prove  that  if  the  equation  P  dx  +  Q  dy  +  R  dz  =  0  is  integrable,  it 
represents  a  family  of  surfaces  orthogonal  to  the  family  represented  by 

Pp+Qq  =  R. 
Hence  find  the  family  orthogonal  to 

<p{z(x  +  y)2,  x2-y2}  =  0. 
(17)  Find  the  surfaces  whose  tangent  planes  all  pass  through  the 

origin. 

(18)  Find  the  surfaces  whose  normals  all  intersect  the  circle 

x2  +  y2  =  l,    2  =  0. 

(19)  Find  the  surfaces  whose  tangent  planes  form  with  the  co- 
ordinate planes  a  tetrahedron  of  constant  volume. 

(20)  Prove  that  there  is  no  non-plane  surface  such  that  every 
tangent  plane  cuts  off  intercepts  from  the  axes  whose  algebraic  sum  is 
zero. 

(21)  Show  that  if  two  surfaces  are  polar  reciprocals  with  respect  to 

the  quadric  x2  +  y2  =  2z,  and  (x,  y,  z),  (X,  Y,  Z)  are  two  corresponding 
points  (one  on  each  surface)  such  that  the  tangent  plane  at  either  point 
is  the  polar  plane  of  the  other,  then 

X  =  p;     Y  =  q;    Z=px  +  qy-z;    x  =  P;     y  =  Q. 
Hence  show  that  if  one  surface  satisfies 

./>,  y,  *,  p,  ?)=o, 
the  other  satisfies    / (P,  Q,  PX  +QY-Z,  X.  Y)  =  0. 

(These  equations  are  said  to  be  derived  from  each  other  by  the 
Principle  of  Duality.) 
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(22)  Show  that  the  equation  dual  to 
z=px  +  qy+pq 

ig  0=Z  +  XY, 
7)7 

giving  x  =  P  =  0x=-Y,     y  =  Q=-X, 

z  =  PX+QY-Z=-XY. 

Hence  derive  (as  an  integral  of  the  first  equation)  z=  -xy. 



*  CHAPTER  XIII 

PARTIAL  DIFFERENTIAL  EQUATIONS  OF  THE  FIRST 
ORDER.     GENERAL  METHODS 

137.  We  shall  now  explain  Charpit's  method  of  dealing  with 

equations  with  two  independent  variables  and  Jacobi's  method  for 

equations  with  any  number  of  independent  variables.  Jacobi's 
method  leads  naturally  to  the  discussion  of  simultaneous  partial 
differential  equations. 

The  methods  of  this  chapter  are  considerably  more  complicated 
than  those  of  the  last.  We  shall  therefore  present  them  in  their 

simplest  form,  and  pass  lightly  over  several  points  which  might  be 
considerably  elaborated. 

138.  Charpit's  f  method.     In  Art.  131  we  solved  the  equation 

p-3x\  =  q2  -y   (1) 

by  using  an  additional  differential  equation 

p-Sx2=a,    (2) 

solving  for  p  and  q  in  terms  of  x  and  y,  and  substituting  in 

dz=pdx+qdy,    (3) 

which  then  becomes  integrable,  considered  as  an  ordinary  differential 

equation  in  the  three  variables  x,  y,  z. 
We  shall  now  apply  a  somewhat  similar  method  to  the  general 

partial  differential  equation  of  the  first  order  with  two  independent 

variables  F  (x,  y,  z,  p,  q)=0   (4) 
We  must  find  another  equation,  say 

f(x,y,z,p,q)=0,      (5) 

*  To  be  omitted  on  a  first  reading. 

f  This  method  was  partly  due  to  Lagrange,  but  was  perfected  by  Charpit.* 
Charpit's  memoir  was  presented  to  the  Paris  Academy  of  Sciences  in  1784,  but 
the  author  died  soon  afterwards  and  the  memoir  was  never  printed. 

162 
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such  that  p  and  q  can  be  found  from  (4)  and  (5)  as  functions  of 
x,  y,  z  which  make  (3)  integrable. 

The  necessary  and  sufficient  condition  that  (3)  should  be  in- 
tegrable is  that 

^(dQ    dR\    n(dR    dP\     w/dP    BQ\    A  ,.,  „  . 

where  p=^  Q=q}  R= -l} 

r  dz    *  dz     dy    dx      '    v  ' 
By  differentiating  (4)  partially  with  respect  to  x,  keeping  y  and 

z  constant,  but  regarding  p  and  q  as  denoting  the  functions  of  x, 
y,  z  obtained  by  solving  (4)  and  (5),  we  get 

<W+dFdp+dFdq=0 
dx     dp  dx     dqdx 

Similarly  §?  +  £9e+ffj*_0   (8) J  dx    dpdx    dqdx 

-ci         /»%      J  /ox        rfy     ̂ Fdf    dFdf 

From  (7)  and  (8),     J  £  =  -J--^  £,      (9) 

U  I  '     *       A     t  dFdf      dFdf where  J  stands  for  =-  #-  -  =-  ̂ - . dp  dq     dq  dp 

J%-     f  |-||   (10) 

Jdf=JFdf+dFdf 
dy        dy  dq     dqdy' 
dp_     dFdf    dFdf 

Jdz-~dzdq*TqJ*     (12) 

Substituting  in  (6)  and  dividing  out  *  <7,  we  get 

(dF^f_dFdf\       fdFdf_dFdf\ 
*\dz  dp     dpdzJ     ̂ Vdz  dq     dq  dz ) 

dF^f_dF^f+dF^f_dFBf_0 

dy  dq     dq  dy     dx  dp     dp  dx      ' 

dpdx     dqdy     \    dp     ̂  dq) dz 
(dF       dF\df    (dF      dF\df    A        ,lox 

S  +{Tx+P-dz)dp  +  [dy-^dz)drr0-    "'<*) 
*  J  cannot  vanish  identically,  for  this  would  imply  that  F  and  /,  regarded  as 

functions  of  p  and  q,  were  not  independent.  This  is  contrary  to  our  hypothesis 
that  equations  (4)  and  (5)  can  be  solved  for  p  and  q. 
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This  is  a  linear  equation  of  the  form  considered  in  Art.  126, 

with  x,  y,  z,  p,  q  as  independent  variables  and  /  as  the  dependent 
variable. 

The  corresponding  subsidiary  equations  are 

dx         dy   dz  dp  dq       _df     ,,.* 

"JF~'JF~  _    dF_    d_F~d_F       dlTdF       dF~6'    {    ' 
dp         dq  dp     ̂  dq     dx     "  dz     dy     ̂   dz 

If  any  integral  of  these  equations  can  be  found  involving  p  or 

q  or  both,  the  integral  may  be  taken  as  the  additional  differential 

equation  (5),  which  in  conjunction  with  (4)  will  give  values  of  p 
and  q  to  make  (3)  integrable.  This  will  give  a  complete  integral  of 
(4),  from  which  general  and  singular  integrals  can  be  deduced  in 
the  usual  way. 

139.  As  an  example  of  the  use  of  this  method,  consider  the 

equation  2xz-px2  -2qxy  +pq=0   (1) 

Taking  the  left-hand  side  of  this  equation  as  F,  and  substituting 
in  the  simultaneous  equations  (14)  of  the  last  article,  we  get 

dx  dy  dz  dp        dq  _df 

x2  - q    2xy  -p    px2  +  2xyq  - 2pq    2z  -2qy     0      0  ' 
of  which  an  integral  is  q  =  a   (2) 

2x{z-ay) 

From  (1)  and  (2),  p  =  : 
ar  -a 

1  ,  7      2x(z-ay)dx        7 
Hence  dz=pdx+qdy= — —^ — — — +ady, 

0dz  -ady  _  2x  dx 1.€.  —     s  » 

z  -  ay       xz  -  a 

i.e.     z  =  ay  +  b  (x2  -  a) . 

This  is  the  complete  integral.     It  is  easy  "to  deduce  the  Singular 
Integral  z  =  x2y. 

The  form  of  the  complete  integral  shows  that  (1)  could  have 

been  reduced  to  z  =  PX  +  qy  -  Pq, 

which  is  a  particular  case  of  a  standard  form,  by  the  transformation 

X2=X.     p=dz_^dz '  dX    2x  dx' 

Equations  that  can  be  solved  by  Charpit's  method  are  often 
solved  more  easily  by  some  such  transformation. 
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Examples  for  solution. 

Apply  Charpit's  method  to  find  complete  integrals  of  the  following  : 

(1)  2z+p2  +  qy  +  2y2=0.  (2)  yzp2  =  q. 

(3)  pxy+pq  +  qy  =  yz.  (4)  2x(z2q2  +  l)—pz. 

(5)3  =  3^2.     (Cf.  Art.  129.)        (6)  z2(p2z2  +  q2)  =  l.     (Cf.  Art.  130.) 

(7)  p-3x2  =  q2-y.     (Cf.  Art.  131.) 

(8)  z=px  +  qy+p2  +  q2.    (Cf.  Art.  132.) 

(9)  Solve  Ex.  2  by  putting  y2=  Y,  z2=Z. 
(10)  Solve  Ex.  4  by  a  suitable  transformation  of  the  variables. 

140.  Three   or   more   independent  variables.     Jacobi's*    method. 
Consider  the  equation 

F(x1}  x2,  x3,  ft,  ft,  ft)  =0,   (1) 

where  the  dependent  variable  z  does  not  occur  except  by  its  partial 

differential  coefficients  ft,  ft,  p3  with  respect  to  the  three  independent 

variables  xv  x2,  x3.  The  fundamental  idea  of  Jacobi's  method  is 

very  similar  to  that  of  Charpit's. 
We  try  to  find  two  additional  equations 

Fx{xx,  x2,  Z3,  ft,  ft,  ft)=al5    (2) 

F2(xv  x2,  x3,  px,p%,Pz)=a2     (3) 

(where  ax  and  a2  are  arbitrary  constants),  such  that  ft,  p2,  p3  can 
be  found  from  (1),  (2),  (3)  as  functions  of  x1}  x2,  x3  that  make 

dz  =p1dx1  +p2dx2  +p3dx3    (4) 

integrable,  for  which  the  conditions  are 

d?2=    d2z    ̂ dft.    3ft=3ft.    dft=3ft  ^ 
dx1     dxxdx2     dx2      dxx     dx3      dx2    dx3  " 

Now,  by  differentiating  (1)  partially  with  respect  to  xv  keeping 

x2  and  x3  constant,  but  regarding  ft,  ft,  ft  as  denoting  the  functions 

of  xv  x2,  x3  obtained  by  solving  (1),  (2),  (3),  we  get 

01  +dF  dh+?I  fe+^  ̂ 3=0   (6) dxx     3ft  dxx    3ft  dxx    3ft  3^ 

Similarl         dIl +dJjdJPl +dL^ +dIldh  ̂ o   (7) 
^       dxx     3ft  dxx     3ft  3^     3ft  dxj 

*  Carl  Gustav  Jacob  Jacobi  of  Potsdam  (1804-1851)  may  bo  considered  as  one 

of  the  creators  of  the  Theory  of  Elliptic  Functions.  The  "  Jacobian  "  or  "  Func- 
tional Determinant  "  reminds  us  of  the  large  part  he  played  in  bringing  deter- 

minants into  general  use. 
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From  (6)  and  (7), 

d(F,  Fx)  |  d(F,  Fx\  dp2  |  d(F,  Fx)  dpz  _0  8) 

d(*i>Pi)    d(P2,Pi)  fax     3{VvVi)dxi      '  "" 

where  ̂ 7— - — H  denotes  the  "  Jacobian"  =—  5-^-s—  =-*. dO&i>  ̂ 1)  ^1  ?Pi     "Pi  ™h. 
Similarly 

d(F,Fx)  ̂ (FtFJdft  ̂ (FtFJdfr^  (g) 
d {x2,  p2)    d  (pv  p2)  dx2    d (p3,  p2)  dx2      '"' 

and  d(F,  Fx)  ̂ (F.FJ  dp,  |  d(F,  Fx)  dp,  =Q 
^  (a*>  ?3)    3  (p1}  #,)  ax3    9  (p2,  p3)  dx3 

Add  equations  (8),  (9),  (10). 
Two  terms  are 

d(F,  Fx)  dp2  |  d(F,  Fx)  dPl_   dH   mF,Fx)  }d(F,  Ft)\  =0 
d(P&  Pi)  dxi    d(Pv  Pt)  dx2    dxxdx2Xd{p2,  px)    d{pv  p2)j 

Similarly  two  other  pairs  of  terms  vanish,  leaving 

3(2?,^)^,^)  |3(J,,J,i)H)  (n) 
d(x1,p1)    d(x2,p2)    d(x3,p3)       ' 

ie    dFdJ\JFdJ\+^BF1_dFdJ\  +  dFdJ\_dFdF1=0 
dxx  dpx     dpx  dxx     dx2  dp2     dp2  dx2     dx3  dp3     dp3  dx3 

This  equation  is  generally  written  as  (F,  Fx)  =0. 

Similarly  (F,  F2)=0    and    (Fx,  F2)  =0. 
But  these  are  linear  equations  of  the  form  of  Art.  126.  Hence 

we  have  the  following  rule  : 

Try  to  find  two  independent  integrals,  Fx  =  ax  and  F2  =  a2,  of  the 
subsidiary  equations 

dxx      dpx      dx2       dp2      dx3      dp3 

"JIT  tlT  ~JL  =W.  =  'jF==W dpx     dXf,         dp2     dx2        dp3     dx3 

If  these  satisfy  the  condition 

IF     SM-V^9^     dFidF*\-0 
{*»**)=Zi\  far  dp~r~dp~r  dx~r)-^ 

and  if  the  p's  can  be  found  as  functions  of  the  x's  from 
F  =  Fx-ax  =  F2-a2=0, 

integrate  the  equation*  formed  by  substituting  these  functions  in 

dz  =p1dx1  +p2dx2  +p3dx3. 

*  For  a  proof  that  this  equation  will  always  be  integrable,  see  Appendix  C. 
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141.  Examples  on  Jacobi's  method. 

Ex.  (i).  2p1x1x3  +  Sp2x32+p22p3  =  0   (1) 
The  subsidiary  equations  are 

dx1          dp1  _           dx2              dp2      dx3               dp3 

-2xjX3    2p^3~  -3x32-2p2p3~  0  ~  -p22~2plx1  +  6p2x3 
of  which  integrals  are  F1=p1xi=av      (2) 

and  F2-P2     =az   (3) 

Now  with  these  values  (Fv  F2)  is  obviously  zero,  so  (2)  and  (3)  can 
be  taken  as  the  two  additional  equations  required. 

p1  =  a1x1-\    p2  =  a2,     p3= -a2-2(2a1x3  +  3a2x32). 

Hence      dz  =  alxl~1dxl  +  a2dx2  -  a2~2  {2a1x3  +  3a2x32)  dx3 

or  z  =  a1  log  x1  +  a2x2  -  a2~2(axx32  +  a2x33)  +  a3, 
the  complete  integral. 

Ex.  (ii).  {x2  +  x3){p2+p3)2  +  zVl=0   (4) 
This  equation  is  not  of  the  form  considered  in  Art.  140,  as  it  involves 

2.     But  put 
dz     dxx        du   I  du  „  ._ 

•-**  ̂ wr^r-dx-Jdx-r   J  4,say' 
where  u=0  is  an  integral  of  (4). 

Similarly  p2=  - PJPt ;    pz  =  - P3/P4. 

(4)  becomes         (x2  +  x3){P2  +  P3)2-xiP1P4  =  0,      (5) 

an  equation  in  four  independent  variables,  not  involving  the  dependent 
variable  u. 

The  subsidiary  equations  are 

dx1     dP1  dx2  _      dP2      _  dx3 

V>4  =  ~0~  =  -2(x2  +  x3)(P2  +  P3)  =  (P2  +  P3)2==  -2(x2  +  x3)(P2  +  P3) 
dP3  dx4         dPi 

of  which  integrals  are  F1=P1  =  av       (6) 

F2=P2-P3  =  a2   (7) 

F3=x4Pi  =  a3   (8) 

We  have  to  make  sure  that  (Fr,  Fs)  =  0,  where  r  and  s  are  any  two 
of  the  indices  1,  2,  3.     This  is  easily  seen  to  be  true. 

Solving  (5),  (6),  (7),  (8),  we  get 

P1  =  a1;    Pi  =  a3xi~1;     2P2  =  a2±\/{a1a3/(x2  +  x3)} ;     P3  =  P2-«2> 

so  du  =  aldxl  +  a^f1  dx4  +  \a2  (dx2  -  dx3) 

±  W{alaJ(Xi  +  X3)}  (JX2  +  ̂3), 

i.e      u  =  axxx  +  a3  log  z4  +  \a2{x2  - x3)  ± y/{a1a3(xl  +  ̂ 3)}  +  °4- 
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So  m=0  gives,  replacing 

%4  by  z,    aila3  by  Av     Wa3  by  A2,    aja3  by  A3, 

log  Z  +  AXXX  +  A  2(X2  -  X3)  ±  ̂ {Ax{x2  +  ̂ s)}  +  ̂3  =  0, 
the  complete  integral  of  (4). 

Examples  for  solution. 

Apply  Jacobi's  method  to  find  complete  integrals  of  the  following : 

(1)  Pi*  +  p22  +  p3  =  l.  (2)  ̂ Vl'aV+ftV-}'^0' 

(3)  pxxx+p2x2=p32.  (4)  pxp2p3+p4sxJx2x3x^=0. 

(5)  pxp$>3  =  zzxxx2x3.  (6)  p3x3(px+p2)+xx  +  x2=0. 

(7)  px2+p2p3-z{p2  +  p3)=0. 

(8)  (j?1  +  r»1)2  +  (^2  +  x2)2  +  (^3  +  a;3)2  =  3(a;1  +  a;2  +  a;3). 

142.  Simultaneous  partial  differential  equations.     The   following 
examples  illustrate  some  typical  cases  : 

Ex.  (i).  F=px2  +  p2p3x2x32  =  0,       fl) 

Fl=p1+p2x2=0   (2) 
Here 

Thus  the  problem  may  be  considered  as  the  solution  of  the  equation 
(1),  with  part  of  the  work  (the  finding  of  Fx)  already  done. 

The  next  step  is  to  find  F2  such  that 

(F,F2)=0  =  (Fx,F2). 

The  subsidiary  equations  derived  by  Jacobi's  process  from  F  are 
dxx      dpx  dx2  dp2  dx3  dp3  ■ 

-%Pi~    0  -P3^2X32~P2V3X32~  -p2X2X32~2p2])3X2X3 
An  integral  is  Pi~a   (3) 
We  may  take  F2  as  px,  since  this  satisfies  (F,  F2)=0  =  (Fv  F2). 
Solving  (1),  (2),  (3)  and  substituting  in  dz=p1dx1+p2dx2  +  p3dx3, 

dz  =  a  dxx  -  gkk2-1  dx2  +  ax3~2  dx3, 

so  z  =  a(xx-\ogx2-x3~1)  +  b. 

Ex.  (ii).  F==pxxx+P2x2-p3*=0,    (4) 

Fx=Pi     p2+p3-l=0   (5) 

Here  (F,  Fx)=px+ p2  -l)  =  px-p2. 
This  must  vanish  if  the  expression  for  dz  is  to  be  integrable. 
Hence  we  have  the  additional  equation 

Pi-P2=0   (6) 
Solving  (4),  (5),  (6)  and  substituting, 

dz  =  —    +  dx3, 

z  =  log  (cc j  +  x2)  +x3  +  a. 
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In  examples  of  this  type  we  do  not  have  to  use  the  subsidiary 
equations.  The  result  has  only  one  arbitrary  constant,  whereas  in 
Ex.  (i)  we  got  two. 

Ex.  (iii).  F=xx2  +  x22+p3=0,      (7) 

Jispi+i>i+*,,-0   (8) 

Here  (F,  FJ  =  2xx  +  2x2  -  2x3. 

As  xv  x2,  %3  are  independent  variables,  this  cannot  be  always  zero. 
Hence  we  cannot  find  an  integrable  expression  for  dz  from  these 

equations,  which  have  no  common  integral. 

Ex.  (iv).         F=p1+p2+p32-3x1-3x2-ix32  =  0,    (9) 

Fl=x1p1-x2j)2-2x12  +  2x22  =  0,     (10) 

F2=p3~2x3=0.   (11) 

Solving  (9),  (10),  (11)  and  substituting  in  the  expression  for  dz, 

dz  =  (2xt  +  x2)  dxx  +  (xx  +  2x2)  dx2  +  2x3dx3, 

so  z  =  xl2  +  xlx2  +  x22  +  x32  +  a. 
This  time  there  is  no  need  to  work  out  (F,  Fx),  (F,  F2),  {Fx,  F2). 

Ex.  (v).  F=Pi+p2-l-x2  =  0,     (12) 

F1=pl+p3-x1-x2  =  0,   (13) 

F2=p2+ps-l-x1=0   (14) 

These  give  dz  =  xzdxx  +  dx2  +  xxdx3. 
As  this  cannot  be  integrated,  the  simultaneous  equations  have  no 

common  integral. 

Ex.  (vi).  F=x1px-x2p2  +  p3-pi=0,    (15) 

F1=spl  +  p2-x1-x2=:0   .....(16) 

Here     (F,  Fl)=p1- x1{-l)-p2  +  x2{-l)=pl-p2  +  x1-x2. 
As  in  Ex.  (ii),  this  gives  us  a  new  equation 

F2=p1-p2  +  x1-x2=-0   (17) 

Now  (F,  F2)=p1-x1-p2(-l)+x2(-l)  =  F1=Q, 

and  (Fx,  ig  =  (-l)-l+(-l)(-l)-(-l)=0, 

so  we  cannot  get  any  more  equations  by  this  method. 

The  subsidiary  equations  derived  from  F  are 

dxx     dpx     dx2_  dp2  _dx3_dp3_dxi_dj)4 

-xx~  px~ x2       -p2     -1       0        1        6 
A  suitable  integral  is  F3  =  p3  =  a,    (18) 

for  this  satisfies  (F,  F3)  =  (FV  F3)  =  (F2,  F3)=0. 

We  have  now  four  equations  (15),  (16),  (17),  (18).     These  give 

Pi  =  z2;     P2  =  a;i;     Vz  =  a">     V^a'> 
so  z  =  xxx2  +  a  (x3  +  :cd)  +  b. 
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But  in  this  example  we  can  obtain  a  more  general  integral.  The 
two  given  equations  (15)  and  (16)  and  the  derived  one  (17)  are 
equivalent  to  the  simpler  set : 

Vi=xz>   '   <19) 

?2  =  z,>    (20) 

?3-?4=0   (21) 
From  (19)  and  (20),  z  =  xlx2  +  a,ny  function  of  x3  and  x4. 

(21)  is  a  linear  equation  of  Lagrange's  type,  of  which  the  general 
integral  is  <}>(z,  x3  +  %i)=0, 
i.e.  z  is  any  function  of  {x3  +  x4),  and  may  of  course  also  involve  a;, 
and  x2. 

Hence  a  general  integral  of  all  three  equations,  or  of  the  two  given 

equations,  is  z  =  XyX^  +  ̂   (^  +  x^ 
involving  an  arbitrary  function.  The  complete  integral  obtained  by 
the  other  method  is  included  as  a  particular  case.  The  general  integral 
could  have  been  obtained  from  the  complete,  as  in  Art.  134. 

Examples  for  solution. 

Obtain  common  complete  integrals  (if  possible)  of  the  following 
simultaneous  equations  : 

(1)  Pl2+p22-8(Xl  +  X2)2=0, 
(p1-p2)(x1-x2)+p3x3-l=0. 

(2)  aj1apap8=3®2aPaPi  =  a;327'iy2  =  1- 

(3)  PiP^Pa- 8x^X3=0,  (4)  2x3p1p3-xipi  =  0,  ' 
p2  +  p3-2x2-2x3=0.  2pt-p2=0. 

(5)  pxx32  +  p3=0,  (6)  p22+p33  +  x1  +  2x2  +  3x3=0, 
p&a*+p&t*  =  0  p1+p42x4-l=0. 

(7)  2p1+p2+p3  +  2pi=0, 

PlP3-P2?4=0. 
(8)  Find  the  general  integral  of  Ex.  (5). 

(9)  Find  the  general  integral  of  Ex.  (7). 

MISCELLANEOUS  EXAMPLES  ON  CHAPTER  XIII. 

(1)  2xyx3zplp3  +  x2p2  =  0.  (2)  x2p3  +  x1pi=p1p3-p2p4  +  x42=0. 

(3)  9x1xip1(p2  +  p3)-ip42=0,  (4)  9xlzp1(p2  +  p3)-4:=0) 
p1x1+p2-p3=0.  PiXi+P2-Pa  =  Q- 

(0)  x1p2p3  =  x2p3pJ  —x3p^p2  =  z  x±x2x3. 

(6)  p1z2-x12=p2z2-x22=p3z2-x32  =  0. 

(7)  Find  a  singular  integral  of  z  —  plx1+  p2x2+  p3x3  +  pt2  +  p22  +  p32, 
representing  the  envelope  of  all  the  hyper-surfaces  (in  this  case  hyper- 
planes)  included  in  the  complete  integral. 

(8)  Show  that  no  equation  of  the  form  F(xv  x2,  x3,  pv  p2,  p3)=0 
has  a  singular  integral. 
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(9)  Show  that  if  z  is  absent  from  the  equation  F{x,  y,  z,  p,  q)-0, 

Charpit's  method  coincides  with  Jacobi's. 
(10)  Show  that  if  a  system  of  partial  differential  equations  is  linear 

and  homogeneous  in  the  p's  and  has  a  common  integral 
z  =  a1ul  +  a2u2  +  ...  , 

where  the  u'b  are  functions  of  the  sc's,  then  a  more  general  integral  is 
z  =  <t>(uv  wa,  ...)• 

Find  a  general  integral  of  the  simultaneous  equations 

x1p1-x2p2  +  x2p3=0, 

xip3-x^pi  +  x5pb  =  0. 
(11)  If  pl  and  p2  are  functions  of  the  independent  variables  xv  x2 

satisfying  the  simultaneous  equations 

F(xv  x2,  pv  p2)=0  =  F1(x1,  x2,  pv  p2), 

proved  (r.MkW^r- 
Hence  3how  that  if  the  simultaneous  equations,  taken  as  partial 

differential  equations,  have  a  common  integral,  (F,  Fx)  =0  is  a  necessary 
but  not  a  sufficient  condition. 

Examine  the  following  pairs  of  simultaneous  equations  : 

(i)  2^^  +  2^-2  =  0, 

2^(^+2^-1=0. d(F  F-.) 
CHere  ~ —   =  0  identically,  and  the  equations  cannot  be  solved 

d(Vvlh) 

\  for  px  and  p2.] 

\  (ii)  F^Pl-p2*  =  0, 

\  F1=p1  +  2pzxx+x1i=0. d(F  F.) 
THere  (F,  F-.)  and  ̂  — '- — ^  both  come  to  functions  which  vanish d(Pv  Vi) 

when  the  p's  are  replaced  by  their  values  in  terms  of  xx  and  x2      There 
is  no  common  integral.] 

(iii)  F=Pl-p22  +  x2=0, 

Fx^px  +  2^2^!  +  xx2  +  x2 =0. 
d(F,  F,) 

[These  have   a  common  integral,  although   _.  -  comes   to  a d(Pi>  P-i) 

function  that  vanishes  when  the  p's  are  replaced  by  their  values.] 



CHAPTER  XIV 

PARTIAL   DIFFERENTIAL   EQUATIONS  OF   THE    SECOND 
AND    HIGHER   ORDERS 

143.  We  shall  first  give  some  simple  examples  that  can  be 

integrated  by  inspection.  After  this  we  shall  deal  with  linear 
partial  differential  equations  with  constant  coefficients ;  these  are 

treated  by  methods  similar  to  those  used  for  ordinary  linear  equations 
with  constant  coefficients.  The  rest  of  the  chapter  will  be  devoted 

to  the  more  difficult  subject  of  Monge's*  methods.  It  is  hoped  that 
the  treatment  will  be  full  enough  to  enable  the  student  to  solve 
examples  and  to  make  him  believe  in  the  correctness  of  the  method, 

but  a  discussion  of  the  theory  will  not  be  attempted.! 
Several  examples  will  deal  with  the  determination  of  the  arbitrary 

functions  involved  in  the  solutions  by  geometrical  conditions.  J 

The  miscellaneous  examples  at  the  end  of  the  chapter  contain 
several  important  differential  equations  occurring  in  the  theory  of 
vibrations  of  strings,  bars,  membranes,  etc. 

d2z      d2z      d2z 
The  second  partial  differential  coefficients  ^~v  ,    -  ,  ~~-%  will 

be  denoted  by  r,  s,  t  respectively. 

144.  Equations  that  can  be  integrated  by  inspection. 

Ex.  (i).  s  =  2x  +  2y. 
Integrating  with  resj)ect  to  x  (keeping  y  constant), 

q  =  x2  +  2xy  +  e/)(y). 
Similarly,  integrating  with  respect  to  y, 

z  =  x2y  +  xy2  +  I  0  (y)  dy  +  f(.r), 

say  z  =  x2y  +  xy2  +f  (x)  +  F(y). 

*  Gaspard  Monge,  of  Bcaune  (1746-1818),  Professor  at  Paris,  created  Descriptive 
Geometry.     He  applied  differential  equations  to  questions  in  solid  geometry. 

t  The  student  who  desires  this  should  consult  Goursat,  Sur  V integration  des 
equations  mix  derivees  partielles  du  second  ordre. 

X  Frost's  Solid  Geometry,  Chap.  XXV.,  may  be  read  with  advantage. 
172 
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Ex.  (ii).  Find  a  surface  passing  through  the  parabolas 

z  =  0,    y2  =  iax    and    2  =  1,    yz  =  -iax, 
and  satisf ying  xr  +  2p=0. 

The  differential  equation  is 

giving  x2p=f(y), 

z=-\f(y)  +  F{y). 

The  functions  /  and  F  are  to  be  determined  from  the  geometrical 
conditions. 

Putting  2  =  0  and  x  =  y2/ia, 

Similarly  l=~f(y)  +  F(y). 

Hence  F(y)J-,    /(</)=£ 

and Z  ~2    8acc' 

i.e.     8a:r2:  =  4ax  -  ?/2,  a  conicoid. 

Examples  for  solution. 

(1)  r  =  6a;.  (2)  xys  =  l. 

(3)  £  =  sina^/.  (4)  xr  +  p  =  9x2y3. 

(5)  2/s  +^>  =  cos  (x  +  y)  -y  sin  (»  +  ?/).  (G)  t-xq  =  x2. 

(7)  Find  a  surface  satisfying  s  =  8xy  and  passing  through  the  circle 

z=0  =  x2  +  y2-l. 

(8)  Find  the  most  general  conicoid  satisfying  xs  +  q  =  Ax  +  2y  +  2. 

(9)  Find  a  surface  of  revolution  that  touches  2  =  0  and  satisfies 

r  =  12x2  +  4y2. 

(10)  Find  a  surface  satisfying  t  =  6x3y,  containing  the  two  lines 

y  =  0  =  z,     y  =  \=z. 

145.  Homogeneous  linear  equations  with  constant  coefficients.     Tn 

Chap.  III.  we  dealt  at  some  length  with  the  equation 

(Dn+a1Dn-1+a2D»-2  +  ...  +an)y=f(x),   (1) 

where  7)=^-. ax 
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We  shall  now  deal  briefly  with  the  corresponding  equation  in 
two  independent  variables, 

(Z>«  +  aJ)n-W  +  a2Dn-*D'2  +  ...+  anD'n) z  =f(x,  y),      (2) 

where  Z)e=  — ,   D'==- . ox  oy 

The  simplest  case  is    (D  -  mD')z  =0, 
i.e.    p-mq=0, 

of  which  the  solution  is  (p{z,  y+mx)  =0, 

i.e.    z=F(y  +mx). 

This  suggests,  what  is  easily  verified,  that  the  solution  of  (2) 

iif{x,y)=0is 

z  =  F1(y+  mp)  +  F2(y  +  m&)  +  ...+Fn(y  +  mnx), 

where  the  %,  m2,  ...  mn  are  the  roots  (supposed  all  different)  of 

mn  +a1mn-1+a2mn~2  +  ...  +an  =0. 

3^z  o  z  o  z 

dx?       dx2dy       dxdy2      ' 

i.e.    (Z)3-3D2Z)'+2DZ)'2)2=0. 
The  roots  of  m3-3m2  +  2m=0  are  0,  1,  2. 
Hence  z  =  F1(y)  + F2(y  +  x)  + F3(y  +  2x). 

Examples  for  solution. 

(1)  (IP-GDW  +  UDD'2-6D'3)z=0. 
d2z     d2z 

(2)  2r  +  5s  +  2*=0.  (3)  g^-gp-0. 
(4)  Find  a  surface  satisfying  r  +  s  =  0  and  touching  the  elliptic 

paraboloid  z  =  4x2  +  y2  along  its  section  by  the  plane  y  =  2x  + 1 .  [N.  B. — 
The  values  of  p  (and  also  of  q)  for  the  two  surfaces  must  be  equal  for 
any  point  on  y  =  2x  +  l.] 

146.  Case  when  the  auxiliary  equation  has  equal  roots.  Consider 

the  equation  (D-mD')2z=0   (1) 

Put  (D-mD')z=u. 

(1)  becomes  (D  -mD')  w=0, 
giving  u=F(y  +  mx)  ; 

therefore  (D -mD')z=F(y +mx), 

or  p-mq  =  F(y  +  mx). 
The  subsidiary  equations  are 

dx  _  dy  dz 

1       -m    F(y+mx)' 
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giving  y  +mx=a, 

and  •  dz-F(a)dx=0, 

i.e.    z-xF  (y  +  mx)  =  6, 

so  the  general  integral  is 

<f>{z-xF(y+mx),  y+mx}=0     or     z=xF(y  +mx)  +  Fx(y  +mx). 
Similarly  we  can  prove  that  the  integral  of 

(D-mD')nz=0 
is  z=xn~lF(y  +mx)  +xn~2F1(y  +mx)  +  ...  +Fn_1(y  +mx). 

Examples  for  solution. 

(1)  (4D2  +  12DD'+9D'2)z=0.  (2)  25r-40s  +  16t  =0. 
(3)  (Z>»-4Z)aZ)'+4Z)Z)'a)2=0. 
(4)  Find  a  surface  passing  through  the  two  lines  2  =  2  =  0, 

2-1  =x-y=0,  satisfying  r-is  +  it =0. 

147.  The  Particular  Integral.  We  now  return  to  equation  (2)  of 
Art.  145,  and  write  it  for  brevity  as 

F(D,D')z=f(x,y). 
We  can  prove,  following  Chap.  III.  step  by  step,  that  the  most 

general  value  of  z  is  the  sum  of  a  particular  integral  and  the 

complementary  function  (which  is  the  value  of  z  when  the  differ- 
ential equation  has /(a?,  y)  replaced  by  zero). 

The  particular  integral  may  be  written  — ^-r  .f(x,  y),  and 

we  may  treat  the  symbolic  function  of  D  and  D'  as  we  did  that  of 
D  alone,  factorising  it,  resolving  into  partial  fractions,  or  expanding 
in  an  infinite  series. 

1  1    /       87)'\-2 

E'9'     D*  -6DD'  +9^,(12^+36^)  =F>(l  --^-j     (12tf  +  36xy) 

=F2(1+^+27^2  +  -)'(12a;2  +  3G^) 

=-^2 .  (12a;2  +  S6xy)  +  ~  .  3Qx 

=  x4  +  Qx?y  +  9x4  =  lOz4  +  6x3y, 

so  the  solution  of     (D2  -  WD'  +  9D'2)  z  =  l2x2  +  S6xy 

is  2  =  10a4  +6x3y  +  <p(y  +3x)  +  x\Js(y  +'3x). 
Examples  for  solution. 

(1)  (D2-2DD'  +  D'2)z  =  l2xy. 
(2)  {2D2-5DD'  +2D'2)z  =  2i(y-x). 
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(3)  Find  a  real  function  V  of  x  and  y,  reducing  to  zero  when  y=0 
and  satisfying  Q2y    ̂ 2y 

_  +  —„-4x<** +  ,,*). 

148.  Short  methods.      When  /  (x,  y)  is  a  function   of  ax  +  by, 
shorter  methods  may  be  used. 

Now    D(p  (ax  +  by)  =  a<p'  (ax  +  by) ;    D'<f>  (ax  +  by)  =  b<p'  (ax  +  by). 
Hence    F  (D,  D')  <j>  (ax  +  by)  =  F  (a,  b)  (f>{n)  (ax  +  by), 

where  <f>{n)  is  the  nth  derived  function  of  <j>,  n  being  the  degree  of 

F(D,  D'). 
Conversely 

F  (D,  U)  ̂ (aX  +  by^ =  Fja^b)  $ ̂   +  ̂        (A) 
provided  F  (a,  6)=/=0,  e.g. 

  1          .„       „  >_       -sin(2a:+3y) 
D*-4D*D'  +4DD'2°OS  ̂ x+6y)  ~23  -4  .  22 . 3  +4  . 2  . 32 

=  -32sin(2aj+3y), 

since  (f>  (2x  +  3</)  may  be  taken  as  -  sin  (2x  +  3y)  if 

<p'"  (2x  +3y)  =cos  (2x  +3y). 
To  deal  with  the  case  when  F(a,  b)  =  0,  we  consider  the  equation 

(D  - mB')  2sp- mq  =  xr\fr(y  +  mx), 
of  which  the  solution  is  easily  found  to  be 

xr+l so  we  may  take 

1  xr+1 

D_mD>  •  xr^(y  +  mx)  =f+i  ̂ (y+™x). Hence 

t^   ^jz-\lr(v  +mx)  =  -rF,   ■„,.     ,  .x\}/(y  +mx)  =  ... 
(D-mD)nYKJ         '     (D-mD)n-1      v  XJ         ' 

xn 

=~,i'(y+mx)>    (B) 

e'9'     D2-2DD,+D'2 tan  (?/  +  ̂  =  ̂ tan  ̂  +  ̂' 
while 

D>-5DD'+W> Sin  (4*  +  y)  =irm  ■  D^D' sin  {ix  +y) 

=i)  _  4/)'  •  -  4 cos  (4x +y">  by  (A) =  -\x cos  (4a:  +  y)  by  (B). 
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Examples  for  solution. 

(1)  (D2-2DD'  +  D'2)z  =  ex+2v. 

(2)  (D*-6DD'  +9D'2)z  =  6x  +  2y. 

(3)  (D^-4D2D'  +  ±DD'2)z=i  sin  (2x  +  y). 
d2V    d2V 

(4)  ar-.-ai-fc"/*  (5)  ̂   +  °^=l2(x  +  y) 
(6)  4r-4s  +  «  =  161og(a;  +  2?/). 

149.  General  method.     To  find  a  general  method  of  getting  a 
particular  integral,  consider 

(D  -mD')z  =  p-mq=f(x,  y). 
The  subsidiary  equations  are 

dx  _  dy  _      dz 
1  ~  -m~f(x,  yY 

of  which  one  integral  is  y  +mx=c. 

Using  this  integral  to  find  another, 

dz  =/  (x,  c  -  mx)  dx, 

z  =  I  f(x,  c-mx)  dx  +  constant, 

where  c  is  to  be  replaced  by  y  -  mx  after  integration. 

Hence  we  may  take  ̂    jy  .f(x,  y)  as  I  f(x,  c  -mx)  dx,  where 

c  is  replaced  by  y  +  mx  after  integration. 

Ex.  (D-2D')(D  +  D')z  =  (y-l)e*. 

Here     \f{x,  c-2x)dx=\  (c-2x-l)exdx  =  {c-2x  +  l)ex. 

Therefore  -=r — —=-,  .  (y  -  1)  ex  =  (y  +  1)  ex,  replacing  c  by  y  +  2x. 

Similarly  jr — =-,  .  {y  +  l)ex  is  found  from  I  (c  +  x  +  l)exdx  =  (c  +  x)e* 

by  replacing  c  by  y  —  x,  giving  yex,  which  is   the  particular  integral 
required. 

Hence  z=^yex +  (p{y  +  2x)+\fs(y -x). 

Examples  for  solution. 

(1)  (D2  +  2DD'  +  D'2)z  =  2cosy-XKh\y. 

(2)  (D2-2DD'  -WD'2)z  =  12xy.  (3)  (r  +  s-Gt)z  =  y  cos  x. 

(4)  ̂ -^-2^  =  ̂   +  ̂ -y«)8m^-co8^. 

(5)  r-t  =  tan3  x  tan  y  -  tan  x  tan3  ?/. 

{  '  dx2     dt2    t2   x2' 
P.D.E.  M 
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150.  Non-homogeneous  linear  equations.     The   simplest   case   is 

(D-mD'  -o)2=0, 
i.e.    p  -  mq  =  az, 

giving  <p  (ze~ax,  y+mx)  =0, 
or  z=eax\fs(y  +mx). 

Similarly  we  can  show  that  the  integral  of 

(D-mD'  -a)(D-nD'  -b)z=0 
is  z=eaxf(y+mx)+ebxF(y+nx), 

while  that  of  (D  -  mD'  -  afz  =  0 
is  z=eaxf(y+mx)+xeaxF(y+mx). 

But  the  equations  where  the  symbolical  operator  cannot  be 

resolved  into  factors  linear  in  D  and  D'  cannot  be  integrated  in  this 
manner. 

Consider  for  example  (D2  -D')z=0. 
As  a  trial  solution  put  z  =  e1uc+ky,  giving 

{D2-D')z  =  (h2-k)e'"+ki>. 
So  z=eh{x+hy)  is  a  particular  integral,  and  a  more  general  one  is 

YlAeh(xJrliy\  where  the  A  and  h  in  each  term  are  perfectly  arbitrary, 
and  any  number  of  terms  may  be  taken. 

This  form  of  integral  is  best  suited  to  physical  problems,  as  was 

explained  at  some  length  in  Chap.  IV.  Of  course  the  integral  of 
any  linear  partial  differential  equation  with  constant  coefficients 
may  be  expressed  in  this  manner,  but  the  shorter  forms  involving 
arbitrary  functions  are  generally  to  be  preferred. 

Examples  for  solution. 

(1)  DD'(D-2D'  -3)2  =  0.  (2)  r  +  2s  +  t  +  2p  +  2q  +  l=0. 

(3)  li*  Tt-  (4)  (D2-I)'2+I)-I)')z=0- d2V    d2V 

(5)  (2D4-3D2Z)'  +  Z)'2)z=0.  (6)  ̂ T+^F=»2^ 

(7)  (Z)-2D'-l)(Z>-2Z>'2-l)z  =  0. 
(8)  Find  a  solution  of  Ex.  (4)  reducing  to  1  when  x=  +00  and  to 

?/2  when  x  =  0. 

151.  Particular  Integrals.  The  methods  of  obtaining  particular 

integrals  of  non-homogeneous  equations  are  very  similar  to  those  in 

Chap.  III.,  so  we  shall  merely  give  a  fewT  examples. 

Ex.  (i).  (IP-3DD'  +  D  +  l)z  =  e2*+sy, i  r2x+3y 
e2x+3?/  =   =  _  l_e2x+Sy 

Pi-3DD'  +  D  +  ]  '  23-3.2.3+2  +  l 
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Hence  z  =  -  }e2x+3v  +  lAehx+k^, 

where  h*  -  3hk  +h  + 1  =0. 

Ex.  (ii).         (D  +  D'-l){D  +  2D'-3)z  =  4:  +  3x  +  6y. 

=  i{l  +  D  +  D'  +  terms  of  higher  degree} 
(       D  +  2D'  .  L.  ,       J  ) 

x  1 1  H   1-  terms  of  higher  degree  J- 

.  j.     4D  +  5Z)'  ...  ,       ,         ) 
=  -g- 1 1  H   h terms  of  higher  degree  j-. 

Acting  on  4  +  3x  +  6y,  this  operator  gives 

${4+3x  +  6y+4:  +  10}=>6  +  z  +  2y. 

Hence  z  =  6  +  x  +  2y  +  exf  (y-x)  +  e3xF(y  -  2x). 

Ex.  (Hi).  (Z)2  -  DDf  -  2D)  z  =  sin  (3x  +  4y). 

D2-DD'-2D  • Sin  (3*  +  4y)  =  -32-(-3.4)-2D '  "^  f  ^  +  iy) 

=  3^2^*sin(3aJ  +  4^ 
_3  +  2J  3  sin  (3s  +  4y)  +  6  cos  (8s  +  4y) 

-9T4^-sin(,3a;  +  4^-~  9-4(-32) 
=  TV  sin  (3x  +  4t/)  +  T2s  cos  (3a;  +  4y). 

Hence     z  =  TV  sin  (3x  +  ±y)+-h  cos  (3a;  +  42/)  +  2J^ ete+A'y, 
where  h2-hk-2h=0. 

Examples  for  solution. 

(1)  (D-  D' -l)(D- D' -2)z  =  e**-v. 

(2)  s  +  p-q  =  z  +  xy.  (3)  (D-  D'2)z  =  cos  (x-3y). 

(4)  r-s+p-l.  (5)  g-g^-f-^*. 

(6)  (Z)-3Z)'-2)2z  =  2e2*tan(2/  +  3a;). 
152.  Examples  in  elimination.  We  shall  now  consider  the  result 

of  eliminating  an  arbitrary  function  from  a  partial  differential 

equation  of  the  first  order. 

Ex.  (i).  2px-qy  =  <p(x2y). 
Differentiating  partially,  first  with  respect  to  x  and  then  toy/,  we  get 

2rx  -sy  +  2p  =  2xyqy'(x2y), 

and  2sx-ty-q  =  x2(/)'(x2y), 
whence  x(2rx  -sy  +  2p)  =  2?/(2s:r  -ty-q) 

or  2x2r  -  5xys  +  2y2t  +  2  {px  +  qy)  =  0, 
which  is  of  the  first  degree  in  r,  s,  t. 
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The  same  equation  results  from  eliminating  \fs  from 

px-2qy  =  \fs(xy2). 

Ex.  (ii).  p2+q  =  <j>{2x  +  y). 

This  gives  2pr  +  s  =  2<p'{  2x  +  y), 
and  2ps  +  t  =  <p'(2x  +  y), 
whence  2pr  +  s  =  ips  +  2t, 
again  of  the  first  degree  in  r,  s,  t. 

Ex.  (iii).  y-p  =  <p(x-q). 

This  gives  -r  =  (l  -s)cp'(x-q), 
and  -  l-s=  -t<f>'(x-q), 
whence  rt  =  (l-s)2 
or  2s  +  (rt-s2)  =  l. 

This  example  differs  from  the  other  two  in  that  p  and  q  occur  in  j 
the   arbitrary  function  as  well   as  elsewhere.     The  result  contains  a 

term  in  (rt  -  s2) 

Examples  for  solution. 

Eliminate  the  arbitrary  function  from  the  following  : 

(1)  py-q  +  3y2  =  (j>(2x  +  y2).  (2)  x--  =  q>(z). 

(3)  p  +  x-y  =  <p(q-2x  +  y).  (4)  px  +  qy  =  (f>(p2  +  q2). 
(5)  p2-x  =  <p(q2-2y).  (6)  p+zq  =  <p(z). 

153.  Generalisation  of  the  preceding  results.  If  u  and  v  are 

known  functions  of  x,  y,  z,  p,  q,  and  we  treat  the  equation  u  =  (J>  (v) 
as  before,  we  get 

du       du    du       du     (   dv       dv     dv       dv\      ..  . 

,  du       du    du       du     (   dv       dv     dv       dv\       ..  . 

and     ̂ V^a^l^VaT/^l)-^"'- 
Eliminating  <j)'(v)  we  find  that  the  terms  in  rs  and  st  cancel  out, 

leaving  a  result  of  the  form 

Rr+Ss+Tt  +  U(rt-s2)  =  V, 
where  R,  S,  T,  U  and  V  involve  p,  q,  and  the  partial  differential 
coefficients  of  u  and  v  with  respect  to  x,  y,  z,  p,  q. 

„     du  dv     dv  du 
The  coefficient  u  =  =-  _ —  ,  -  ~- , dp  dq     dp  oq 

which  vanishes  if  v  is  a  function  of  x,  y,  z  only  and  not  of  p  or  q. 
These  results  will  show  us  what  to  expect  when  we  start  with 

the  equations  of  the  second  order  and  try  to  obtain  equations  of  the 
first  order  from  them. 
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154.  Monge's  method  of  integrating  Rr  +  Ss+Tt=V.  We  shall 
now  consider  equations  of  the  first  degree  in  r,  s,  t,  whose  coefficients 

R,  S,  T,  V  are  functions  of  p,  q,  x,  y,  z,  and  try  to  reverse  the  process 
of  Arts.  152  and  153. 

Since  dp  =  * dx  +  ̂ dy  =  rdx+sdy 

and  dq=sdx+tdy, 

Rr+Ss+Tt-V=0 

becomes         *(&-"£*)  +Ss  +  t(*^)  -7-0, 
i.e.    Rdpdy  +  T dqdx  -V dy  dx  -s  (R  dy2  -S dy  dx  +  T dx2)  =0. 

The  chief  feature  of  Monge's  method  is  obtaining  one  or  two 
relations  between  p,  q,  x,  y,  z  (each  relation  involving  an  arbitrary 
function)  to  satisfy  the  simultaneous  equations 

Rdy2-Sdydx  +  Tdx2=0, 

Rdpdy +  T  dqdx- V  dy  dx  =0. 

These  relations  are  called  Intermediate  Integrals. 

The  method  of  procedure  will  be  best  understood  by  studying 
worked  examples. 

Ex.  (i) .  2x2r  -  5xys  +  2yH  +  2  (px  +  qy)  =  0. 
Proceeding  as  above,  we  obtain  the  simultaneous  equations 

2x2dy2  +  5xydydx  +  2y2dx2=0,   (1) 

and  2x2dpdy  +  2y2dqdx  +  2{px  +  qy)dydx  =  0   (2) 

(1 )  gives  (x  dy  +  2y  dx)  (2xdy  +  y  dx)  =  0, 

i.e.     x2y  —  a    or    xy2  =  b. 

If  we  take  x2y  =  a  and  divide  each  term  of  (2)  by  xdy  or  its  equivalent 

-2ydx,  we  get  2xdp-ydq  +  2pdx-qdy=0, 
i.e.     2px  —  qy  =  c. 

This,  in  conjunction  with  x2y  =  a,  suggests  the  intermediate  integral 

2px-qy  =  <f>(x2tj),      (3) 

where  <j>  is  an  arbitrary  function.     [Cf.  Ex.  (i)  of  Art.  152.] 
Similarly  xy2  =  b  and  equation  (2)  leads  to 

px-2qy  =  \p-{xy2)   (4) 
Solving  (3)  and  (4), 

3px  =  2<p{x2y)-\l,{xy2), 

3qy  =  (t>{x2y)-2\Js{xy2), 
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so      dz  =  pdx  +  qdy  =  i<l>(x?y).(^  +  ̂)-^(xy2).^  +  ~^y 

i.e.    z  =  ̂ <p  {xhj)  .  d  log  {x2y)  -  ij  ^  (xy2) .  d  log  {xy2), 

or        z=f(x2y)  +  F{xy2). 

Ex.  (ii).  y2r-2ys  +  t=p  +  6y. 

Eliminating  r  and  t  as  before,  we  are  led  to  the  simultaneous  equa- 

tions ij2dy2  +  2ydydx  +  dx2=0,       (5) 

and  y2  dp  dy  +  dq  dx  -  (p  +  6y)  dy  dx =0   (6) 

(5)  gives  {ydy  +  dx)2=0, 

i.e.     2x  +  y2  =  a. 
Using  this  integral  and  dividing  each  term  of  (6)  by  y  dy  or  its 

equivalent  -  dx,  we  get 
ydp-dq  +  (p  +  6y)dy=0, 

i.e.     py  -  q  +  Sy2  =  c. 
This  suggests  the  intermediate  integral 

py-q+3y2  =  <p(2x  +  y2). 
As  we  have  only  one  intermediate  integral,  we  must  integrate  this 

by  Lagrange's  method. 
The  subsidiary  equations  are 

dx     dy  dz 

i;=~l=:-3y2  +  <t>(2x  +  y2)' 
One  integral  is  2x  +  y2  =  a.     Using  this  to  find  another, 

dz  +  {-3y2  +  <j>(a)}dy  =  0, 

i.e.     z-yz  +  y<j>{2x  +  y2)=b. 
Hence  the  general  integral  is 

yf,{z-f  +  y<p(2x  +  y2),  2x  +  y2}=0, 

or  z  —  y*-y<f>(2x  +  y2)+f(2x  +  y2). 

Ex  (iii).  pt-qs^q*. 
The  simultaneous  equations  are 

qdydx+pdx2=0,       (7) 

and  pdqdx-q3dydx=0   (8) 

(7)  gives  dx=0    or     qdy  +  pdx(=dz)—0, 
i.e.     x  =  a    or     z  =  b. 

If  dx  =  0  (8)  reduces  to  0=0. 

If  z  =  b,  qdy=  -pdx  and  (8)  reduces  to 

pdq  +  q2p  dx  =  0, 
i.e.     dq/q2  +  dx=0, 

giving  --  +  x  =  c  =  \fr(z)   (9) 
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(9)  may  be  integrated  by  Lagrange's  method,  but  a  shorter  way  is 
to  rewrite  it  fiv    \ 

giving  y  =  xz-  I  \fs(z)dz  +  F(x) 

y  =  xz+f(z)  +  F(x). 
Examples  for  solution. 

(1)  r  —  l  cos2  x  +  p  tan  x=0. 

(2)  (x - y) {xr -xs-ys  +  yt)  =(x  +  y) (p -  q). 

(3)  (q  +  l)s  =  (p  +  l)t.  (4)  t-rscc*y  =  2qtany. 

(5)  xy(t-r)  +  (x2-y2)(s-2)=py- qx. 

(6)  (l+q)2r-2(l+p  +  q  +  pq)s  +  (l+p)2t=0. 
(7)  Find  a  surface  satisfying  2x2r-5xys  +  2yH  +  2(px  +  qy)  =0  and 

touching  the  hyperbolic  paraboloid  z  =  x2-y2  along  its  section  by  the 
plane  y  =  1 . 

(8)  Obtain  the  integral  of  q2r-2pqs+pH  =  0  in  the  form 
y  +  xf(z)  =  F(z), 

and  show  that  this  represents  a  surface  generated  by  straight  lines  that 
are  all  parallel  to  a  fixed  plane. 

♦155.  Monge's  method  of  integrating  Rr +Ss +Tt +U(rt-s2)    V. 
As  before,  the  coefficients  R,  S,  T,  U,  V  are  functions  of  p,  q, 

x,  y,  z. 
The  process  of  solution  falls  naturally  into  two  parts  : 

(i)  the  formation  of  intermediate  integrals  ; . 

(ii)  the  further  integration  of  these  integrals. 

For  the  sake  of  clearness  we  shall  consider  these  two  parts 

separately. 
156.  Formation  of  intermediate  integrals.     As  in  Art.  154, 

r  =  {dp  -  s  dy)/dx 

and  t  =  (dq-s  dx)/dy. 

Substitute  for  r  and  &'m 

Rr+Ss  +  Tt  +  U{rt-s2)  =  V, 

multiply  up  by  dx  and  dy  (to  clear  of  fractions),  and  we  get 

R  dp  dy  +  Tdqdx  +  U  dp  dq  -  V  dx  dy 

-s(R  dy2  -Sdxdy  +  Tdx2  +  U  dp  dx  +  U  dq  dy)  =  0, 

say  M  -sN=0. 
*  The  remainder  of  this  chapter  should  be  omitted  on  a  first  reading.  This 

extension  of  Monge's  ideas  is  due  to  Andre  Marie  Ampere,  of  Lyons  (1775- 1830), 
whose  name  has  been  given  to  the  unit  of  electric  current. 
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We  now  try  to  obtain  solutions  of  the  simultaneous  equations M=0, 

N=0. 

So  far  we  have  imitated  the  methods  of  the  last  paragraph,  but 
we  cannot  now  factorise  N  as  we  did  before,  on  account  of  the 

presence  of  the  terms  U  dpdx  +  U  dq  dy. 
As  there  is  no  hope  of  factorising  M  or  N  separately,  let  us  try 

to  factorise  M+XN,  where  X  is  some  multiplier  to  be  determined 
later. 

Writing  M  and  N  in  full,  the  expression  to  be  factorised  is 

Rdy2+T  dx2  -{S +XV)dxdy +  U  dpdx  +  U  dq  dy 
+  XRdp  dy  +  XT  dq  dx+XU  dp  dq. 

As  there  are  no  terms  in  dp2  or  dq2,  dp  can  only  appear  in  one 
factor  and  dq  in  the  other. 

Suppose  the  factors  are 

Ady+Bdx+C  dp    and    Edy+Fdx+Gdq. 

Then  equating  coefficients  of  dy2,  dx2,  dp  dq, 
AE  =  R;    BF  =  T;    CG=XU. 

We  may  take 

A=R,  E  =  l,  B  =  kT,  F  =  l/k,  C  =  mU,  G  =  X/m. 

Equating  the  coefficients  of  the  other  five  terms,  we  get 

JcT+R/k=  -(S+XV),      (1) 
XR/m  =  U,    (2) 

JcTX/m=XT,      (3) 
mU=XR,      (4) 

mU/k  =  U   (5) 

From  (5),  m  =  k,  and  this  satisfies  (3). 

From  (2)  or  (4),  m  =  XR/U. 
Hence,  from  (1), 

X2(RT  +  UV)+XUS  +  U2=0   (6) 
So  if  A  is  a  root  of  (6),  the  factors  required  are 

(Rdy+X  y-j  dx  +XR dp)  (dy  +  w-, dx  +  p  dq), 
7?  1 

i.e.        j-j  (U  dy  +XT dx  +XU  dp) .  ̂   Q^R dy  +  U  dx+XUdq). 

We   shall  therefore   try  to  obtain  integrals    from   the   linear 

equations  U dy +XT dx +XU dp  =0     (7) 

and  XRdy  +  Udx+XUdq=0,    (8) 
where  X  satisfies  (6). 
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The  rest  of  the  procedure  will  be  best  understood  from  worked 

examples. 

157.  Examples. 

Ex.  (i).  2s  +  (rt-s*)=*l. 

Substituting  R=T  =  0,  S=2,  £/=F=l  in  equation  (6)  of  the  last 

article,*  we  get  \2  +  2\  + 1  =  0, 
a  quadratic  with  equal  roots  -1  and  -1. 

With  X=  -1,  equations  (7)  and  (8)  give 

dy  —  dp  =  0, 
dx-dq  —  0, 

of  which  obvious  integrals  are 

y  —  p  =  const, 

and  x  -  q  =  const. 
Combining  these  as  in  Art.  154,  we  get  the  intermediate  integral 

y-p=f{x-q). 

Ex.  (ii).  r  +  3s*+t  +  {rt-s2)=>l. 
The  quadratic  in  X  comes  to 

2X2  +  3X  +  1=0, 

so  X  =  - 1  or  - 1 . 
With  X=  -1,  equations  (7)  and  (8)  give 

dy-dx-dp=0, 

-dy  + dx-dq  =0, 

of  which  obvious  integrals  are 

p  +  £-?/=  const   (1) 

and  q-x  +  y  =  const   (2) 

Similarly  X  =  -  J  leads  to 

p  +  x-2y  =  comt.   (3) 

and  9 -2a; +  y= const   (4) 

In  what  pairs  shall  we  combine  these  four  integrals  ? 

Consider  again  the  simultaneous  equations  denoted  by  M=0,  N  =  0 
in  the  last  article.  If  these  are  both  satisfied,  then  M  +  X1iV  =  0  and 
M  +  \2N  =0  are  also  both  satisfied  fwhere  Xx  and  X2  are  the  roots  of  the 
quadratic  in  X).  Therefore  one  of  the  linear  factors  vanishes  for  X  =  X, 
and  one  (obviously  the  other  one,  or  else  dy  =  0)  for  X  =  X2. 

That  is,  we  combine  integrals  (1)  and  (4),  and  also  (2)  and  (3), 
giving  the  two  intermediate  integrals 

p  +  x-y=f(q-2x  +  y) 

and  p  +  x  -  2y  =  F(q  -  x  +  y). 

*  We  quote  the  results  of  the  last  article  to  save  space,  but  the  student  is 
advised  to  work  each  example  from  first  principles. 
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Ex.  (iii).        2yr  +  (px  +  qy)s  +  xt-  xy(rt  -  s2)  =  2  -  pq. 

The  quadratic  in  X  comes  to  - 

X2xypq  -  \xy  (px  +  qy)+  x2y2 = 0, 

giving  X  =  y/P    or    x/q. 

Substituting  in  (7)  and  (8)  of  the  last  article,  we  get,  after  a  little 

reduction,  pdy-dx  +  ydp=Q,    (5) 
2y  dy  -  px  dx  -  xy  dq=0,    (6) 

-  qy  dy  +  x  dx  -  xy  dp  =  0,    (7) 

and  -2dy  +  qdx  +  xdq=0   (8) 

Combining  the  obvious  integrals  of  (5)  and  (8),  we  get 

yp-x=f(-2y  +  qx). 
But  (6)  and  (7)  are  non-integrable.  This  may  be  seen  from  the 

way  that  p  and  q  occur  in  them.  Thus,  although  the  quadratic  in  X  has 
two  different  roots,  we  get  only  one  intermediate  integral. 

Examples  for  solution. 

Obtain  an  intermediate  integral  (or  two  if  possible)  of  the  following  : 

(1)  3r  +  is  +  t  +  (rt-s2)=l.  (2)  r  +  t-(rt-s2)=l. 

(3)  2r  +  tex-(rt-s2)=2ex.  (4)  rt-s2  +  1=0. 

(5)  3s  +  (rt-s2)  =2. 

(6)  qxr  +  (x  +  y)  s  +  pyt  +  xy  (rt  -  s2)  =  1  -  pq. 

(7)  (q2  -  1)  zr  -  2pqzs  +  (p2-l)zt  +  z2  (rt  -  s2)  =  p2  +  q2  -  1 . 

158.  Further  integration  of  intermediate  integrals. 

Ex.  (i).  Consider  the  intermediate  integral  obtained  in  Ex.  (i)  of 

Art.  157,  y_2i=f(x-q). 

We  can  obtain  a  "  complete  "  integral  involving  arbitrary  constants 
a,  b,  c  by  putting  x-q  =  a 

and  y  -  p  =f  (a)  =  b,  say. 

Hence  dz  =p  dx  +  q  dy  =  (y  -b)  dx  +  (x-  a)  dy 

and  z=xy-  bx  -  ay  +  c. 

An  integral  of  a  more  general  form  can  be  obtained  by  supposing 
the  arbitrary  function  /  occurring  in  the  intermediate  integral  to  be 

linear,  giving  y  _  p  =  m  (x-q)+  n. 

Integrating  this  by  Lagrange's  method,  we  get 
z  =  xy  +  <p(y  +  mx)  -  nx. 

Ex.  (ii).  Consider  the  two  intermediate  integrals  of  Ex.  (ii),  Art.  157, 

p  +  x-y=f(q-2x  +  y) 

and  p  +  x-2y  =  F(q-x  +  y). 
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If  we  attempt  to  deal  with  these  simultaneous  equations  as  we  dealt 
with  the  single  equation  in  Ex.  (i),  we  get 

q  -  2x  +  y  =  a, 
q-x+y=fi, 

p  +  x-y=f(a), 

p  +  x-2y  =  F(j3). 

If  the  terms  on  the  right-hand  side  are  constants,  we  get  the  absurd 
result  that  x,  y,  p,  q  are  all  constants  ! 

But  now  suppose  that  a  and  /3  are  not  constants,  but  parameters, 
capable  of  variation. 

Solving  the  four  equations,  we  get 
x  =  (5-a, 

V-f(a)-F(fa 
p  =  y-x+f(a), 
q=,x-y  +  (3, 

giving         dz=pdx  +  qdy 

=  (y-x)  (dx  -  dy)  +f  (a)  dx  +  (3  dy 

=  - \d  {x  -  y)*  +/(a)  d(3  -/(a)  da  +  fif'(a)  da  -  fiFtf)  d/3  : 

i.e.  z=-l(x-y)2-^f(a)da-^F'(p)dp  +  Pf(a). 
To  obtain  a  result  free  from  symbols  of  integration,  put 

(  f(a)da  =  <j>(a)     and      f  F(/3)  rf/3  =  ̂   ((3). 

Now     [  @F'(p)  d/3  -  f3F{(3)  -  \F(/3)  d/3,  integrating  by  parts, 

=  /3V/(/3)-V'(/3) 

Hence  z  =  -  £  (x  -  yf  -  <f>  (a)  -  /3y/(/3)  +  ̂   (/3)  +  /3<p'(a), 
rz=-h(x-y)2-<p(a)  +  ̂ (l8)+(3y, 

or  finally  j  x  =  /3  -  a, 

These  three  equations  constitute  the  parametric  form  of  the  equation 
of  a  surface.  As  the  solution  contains  two  arbitrary  functions,  it  may 
be  regarded  as  of  the  most  general  form  possible. 

Examples  for  solution  (completing  the  solution  of  the  preceding  set). 
Integrate  by  the  methods  explained  above  : 

(1)  p  +  x-2y=f{q-2x  +  3y).  (2)  p-x=f(q-y). 
(3)  p-e*=f{q-2y).  (4)  p-y=f(q  +  x), 

p  +  y  =  F(q-x). 
(5)  P-V  =/ (q  - 2s),  (6)  px -  y  =f  (qy - x). 

p-2y  =  F(q-x).  (7)  (zp-x)=f(zq-y). 

(8)  Obtain  a  particular  solution  of  (4)  by  putting  0(a)=-£a2, 
\fr  ((3)  =  1/32  and  eliminating  a  and  (3. 
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MISCELLANEOUS  EXAMPLES  ON  CHAPTER  XIV. 

(1)  r  =  2y2.  (2)  log  s  =  x  +  y.  (3)  2yq+y*t  =  l. 

(4)  r-2s  +  t  =  sm{2x  +  3y).  (5)  x2r-2xs  +  t  +  q=0. 

(6)  rx2-3sxy  +  2ty2+px  +  2qy  =  x  +  2y. 

(7)  y2r  +  2xys  +  x2t  +  px  +  qy  =  0. 

(8)  5r  +  Gs  +  3t  +  2(rt-s2)+3  =  0. 

(9)  2pr  +  2ql-4:pg(rt-s2)  =  l. 

(10)  rt  -  s2  -  s  (sin  a;  +  sin  y)  =  sin  x  sin  */. 

(11)  7r-8s-3i  +  (rt-s2)=36. 

(12)  Find  a  surface  satisfying  r  =  6x  +  2  and  touching  z  =  x3  +  y3 
along  its  section  by  the  plane  x  +  y  + 1  =  0. 

(13)  Find  a  surface  satisfying  r-2s  +  t  =  6  and  touching  the  hyper- 
bolic paraboloid  z  =  xy  along  its  section  by  the  plane  y  =  x. 

(14)  A  surface  is  drawn  satisfying  r  +  l  =  0  and  touching  x2  +  z2  —  l 
along  its  section  by  y=0.     Obtain  its  equation  in  the  form 

z2(x2  +  z2-l)  =  y2(x2  +  z2).  [London.] 

(15)  Show  that  of  the  four  linear  differential  equations  in  x,  y,  p,  q 

obtained  by  the  application  of  Monge's  method  to 
2r  +  qs  +  xt  -  x  (rt  -  s2)  =  2, 

two  are  integrable,  leading  to  the  intermediate  integral 

P-x=f(qx-2y), 

while  the  other  two,  although  non-integrable  singly,  can  be  combined 

to  give  the  integral  ?,  +  J?2  _  x  =  a> 
Hence  obtain  the  solutions 

z  =  \x2  -  2mxy  -  f  mPx3  +  nx  +  <p(y  +  hnx2) 

and  z  =  (a-  \h2)x  +  \x2  +  by  +  c, 
and  show  that  one  is  a  particular  case  of  the  other. 

(16)  A  surface  is  such  that  its  section  by  any  plane  parallel  to  x=0 
is  a  circle  passing  through  the  axis  of  x.  Prove  that  it  satisfies  the 
functional  and  differential  equations 

y2  +  z2  +  yf(x)+zF(x)=0, 

(y2  +  z2)l  +  2(z-yq)(l+q2)=0. 

(17)  Obtain  the  solution  of  x2r  +  2xys  +  y2t  =  0  in  the  form 
*=/(!)^(f> 

and  show  that  this  represents  a  surface  generated  by  lines  that  intersect 
the  axis  of  z. 

(18)  Show  that  rt-s2  =  0  leads  to  the  "  complete  "  integral 
z  =  ax  +  by  +  c. 
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Show  that  the  "  general  "  integral  derived  from  this  (as  in  Art.  134) 
represents  a  developable  surface  (see  Smith's  Solid  Geometry,  Arts. 
222-223). 

Hence  show  that  for  any  developable  surface  q=f(p). 

(19)  Find  the  developable  surfaces  that  satisfy 

pq(r  -t)-  (p2  -q2)s  +  {py  -  qx)  (rt  -  s2)  =0. 

[Assume  q  =/(/>).     This  is  called  Poisson's  method.     We  get 
q  =  ap    or     p2  +  q2  =  b2, 

giving  z  =  <p(x  +  ay)     or    z  =  bx  cos  a  +  by  sin  a  +  c. 
The  second  of  these  integrals  represents  a  plane  which  generates  the 

developable  surface  given  by  the  corresponding  "  general  "  integral.] 
(20)  Show  that  if 

X=p,     Y  =  q,     Z=px  +  qy-z, 

then       r=TJ(RT-S2),    s= -S/(RT-S2),    t  =  R/(RT-S2), 

where  R  =  ̂ y^,  etc. 

Hence  show  that  the  equation 

ar  +  bs  +  ct  +  e  (rt  -  s2)  =  0 
transforms  into  AT  -  BS  +  CR  +  E  =  0, 

where  a,  b,  c,  e  are  any  functions  of  x,  y,  p,  q,  and  A,  B,  C,  E  the  corre- 
sponding functions  of  P,  Q,  X,  Y. 

Apply  this  Principle  of  Duality  (cf.  No.  21  of  the  Miscellaneous 
Examples  at  the  end  of  Chap.  XII.)  to  derive  two  intermediate  integrals 

°f  pq(r  -t)-  (p2  -q2)s  +  (py  -  qx)  (rt  -  s2)  =0. 

(21)  Prove  that  if  x,  y,  u,  v  are  real  and  u  +  iv=f(x  +  iy),  then  F  =  ?t 
and  V  —  v  are  both  solutions  of 

d2V    dW 

dx2     dy2       ' 
and  the  two  systems  of  curves  a  =  const., v= const., 

are  mutually  orthogonal. 
Verify  these  properties  for  the  particular  cases 

(i)  u  +  iv  =  x  +  iy, 

(ii)  u  +  iv  =  (x  +  iy)2, 
(iii)  u  +  iv  =  ]((x  +  iy). 

[The  differential  equation  is  the  two-dimensional  form  of  La  place's 
equation,  which  is  of  fundamental  importance  in  gravitation,  electro- 

statics and  hydrodynamics,     u  and  v  are  called  Conjugate  Functions. 

See  Ramsey's  Hydro-Mechanics,  Vol.  II.  Art.  11. J 
(22)  Obtain  the  solution  of 

a2//       J^y 

dt2  """dx2' 
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subject  to  the  conditions  y=f(x)  and  ~  =  F(x)  when  «=0,  in  the  form 
1     Cx+at 

y  =  U(x  +  at)  +  $f(x-at)  +  -\        F(\)d\. 
taJx-at 

[y  is  the  transverse  displacement  of  any  point  x  of  a  vibrating 
string  of  infinite  length,  whose  initial  displacement  and  velocity  are 

given  by  f(x)  and  F(x).  See  Ramsey's  Hydro- Mechanics,  Vol.  II. Art.  248.] 

(23)  If  y=f(x)  cos  (nt  +  a)  is  a  solution  of 

dt2  +(l    d*4~U' show  that  f(x)=A  sin  mx  +  B  cos  mx  +  H  sinh  mx  +  K  cosh  mx,  where 

m  =  \/(n/a2). 

[The  differential  equation  is  that  approximately  satisfied  by  the 

lateral  vibrations  of  bars,  neglecting  rotatory  inertia.     See  Rayleigh's 
Sound,  Art.  163.] 

(24)  Show  that 

w  =  A  sin  (mirx/a)  sin  (mry/b)  cos  {pet  +  a) 

,.  a  d2w      vfdhv    d2w\ 
satafies  W=°\w+W>' and  vanishes  when 

a:=0,     y  =  0,    x  =  a    or    y  =  b, 

provided  that  m  and  n  are  positive  integers  satisfying 

(p/7r)2  =  (m/a)2  +  (w/6)2. 
[This  *gives  one  solution  of  the  differential  equation  of  a  vibrating 

membrane  with  a  fixed  rectangular  boundary.     See  Rayleigh's  Sound, 
Arts.  194-199.] 

(25)  Show  that  w=AJ0{nr)  cos  (nct  +  a) 

,.  o  d2w      0/d2w    1  dw 
Satlsfi6S"  Tt2^C\ji2+rTr 
where  J0  is  Bessel's  function  of  order  zero  (see  Ex.  2  of  the  set  following 
Art.  97). 

[This  refers  to  a  vibrating  membrane  with  a  fixed  circular  boundary. 

See  Rayleigh's  Sound,  Arts.  200-206.] 

(26)  Show  that      V  =  (Arn  +  Br-"-1)  Pn  (cos  6) 
.  _  a2F  2  3F   i  dw  cot  oar  rt 

where  P„  is  Legendre's  function  of  order  w  (for  Legendre's  equation, 
see  Ex.  2  of  the  set  following  Art.  99). 

[N.  B. — Take  /j.  =  cos  6  as  a  new  variable.  This  equation  is  the 

form  taken  by  Laplace's  potential  equation  in  three  dimensions,  when 
V  is  known  to  be  symmetrical  about  an  axis.  See  Routh's  Analytical 
Statics,  Vol.  II.  Art!  300.] 



APPENDIX  A 

The  necessary  and  sufficient  condition  that  the  equation  M  dx  +  N  dy  =  0 
should  be  exact 

(a)  If  the  equation  is  exact, 

M  dx  +  N  dy  =  a,  perfect  differential  =  df,  say. 

So  M  =  %    and    N  =  %  > -    dx  oy 

it    .  dN    a2/     d2f    bm therefore  —  =  — -;-  =  — i-  =  — - , 
ox     oxoy    oyox     oy 

so  the  condition  is  necessary. 

(6)  Conversely,  if  —  =  — ,  put  F=\Mdx,  where  the  integration 

is  performed  on  the  supposition  that  y  is  constant. 

„,  dF     __  d2F      d2F     dM    BN Ihen  -=-  =  M     and     -    -   =  =—=-  =  -=-  =  -=- . 
ox  oxoy    oyox     oy      ox 

*     £(*-$-* 
N  -  -=—  =  a  constant  as  far  as  a;  is  concerned,  that  is, 

J         a  function  of  y, 

=  0(y)»say. 

Then  iV  =  ̂  +  0(y). 

Now  put  /=  F  +  I  0  («/)  %. 

Then  N  =  %£. 

oy 

dF 
Also         M  =  -=-  by  definition  of  F 

ox 

=  4~,  since  F  and  /differ  only  by  a  function  of  y. 

Thus  M  dx  +  N  dy  =  ~-  dx  +  ~-  dy  =  df,  a  perfect  differential. 

So  the  equation  is  exact,  that  is,  the  condition  is  sufficient. 

d2f        d2f  ~~~  * [Our  assumption  that  =— ■ ~  =  ~— "i    is  justified  if  /  and  its  first  and 

second    partial   differential   coefficients   are   continuous.     See   Lamb's 
Infinitesimal  Calculus,  2nd  ed.,  Art.  210.] 
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The   equation   P(x,  y,  z)  ~-  +Q(x,  y,  z)  —-  +  R(x,  y,  z)~  =  0,  regarded  as 

four-dimensional,  has  no  special  integrals.     (See  Art.  127.) 

Let  u(x,  y,  z)=a, 

v(x,  y,  z)  =  b, 
be  any  two  independent  integrals  of  the  equations 

dx/P  =  dy/Q  =  dz/R. 

Then  we  easily  prove  that 

du        Bu         du     _  ., . 

PS-X+Qdi  +  RS-z=°    (1) 

and  p^+Qf_+B3jl  _0   (2) Bx       By        Bz 

The  left-hand  side  of  (1)  does  not  contain  a,  and  therefore  cannot 
vanish  merely  in  consequence  of  the  relation  u  =  a.  Hence  it  must 
vanish  identically.     Similarly  equation  (2)  is  satisfied  identically. 

Now  let  f=w(x,  y,  z)  be  any  integral  of  the  original  partial 
differential  equation,  so  that 

nBiv     „Bw     nBw     _  /0, 

P8^+QSlj+Rdi=<>   (3) 
This  is  another  identical  equation,  since  /  does  not  occur  in  it. 
Eliminating  P,  Q,  R  from  (1),  (2),  (3),  we  get 

^4=0  identically. B(x,y,z) 

Hence  w  is  a  function  of  u  and  v,  say 

W  =  (f)(u,  v). 

That  is,  /=  w  is  part  of  the  General  Integral,  and  therefore,  as  /=  w 
is  any  integral,  there  are  no  Special  Integrals. 

[The  student  will  notice  the  importance  in  the  above  work  of  a 

differential  equation  being  satisfied  identically.  Hill's  new  classification 
of  the  integrals  of  Lagrange's  linear  equation  (Proc.  London  Math.  Soc. 
1917)  draws  a  sharp  distinction  between  integrals  that  satisfy  an 
equation  identically  and  those  which  have  not  this  property.] 

192 



APPENDIX  0 

The  expression  obtained  for  dz  by  Jacobi's  method  of  solving  a  single 
partial  differential  equation  of  the  first  order  (Art.  140)  is  always 
integrable. 

To  prove  that  dz = pxdxx  +  p2dx2  +  p3dx3 

is  integrable  it  is  necessary  and  sufficient  to  prove  that 

L  =  M  =  N=0,      (A) 

where  iJ^-^,    mJ^-^,     nJ^-^. OX3      OX2  OXy      ox3  ax2     oxl 

Now,  by  adding  equations  (8),  (9),  (10)  of  Art.  140  and  using  the 
relation  (F,  Fl)  =  0,  but  not  assuming  the  truth  of  (A),  we  get 

I'gilA  +M  Wfi  +s'JL3i  =0   (B, o(Pt,  Ps)  o(p3,  px)         d(pv  p2) 

a.    .,    .      Td{FvF2)     ..d(FvFi)     .Td(Fv  F2)     _ 
Similarly   L  -^—^ — ^  +  M^-^ — %+N-±-J> — ^=0      (C) oiPvto)  °iPz>Pi)  d(pvp2) 

Td(F2)F)      .,d(F2,F)      „d(F2,F)      n 
and  £a;    8     ;  +M  ~- 2 — [  +N~^ —   =0   (D) o(p2,  Pz)  o{p3,  px)         d(plt  p2) 

From  equations  (B),  (C),  (D)  we  see  that  either  L  —  M=N—0  or 
A  =  0,  where  A  is  the  determinant  whose  constituents  are  the 
coefficients  of  L,  M,  N  in  (B),  (C),  (D). 

But  these  coefficients  are  themselves  the  co- factors  of  the  constituents 

of  the  determinant  a/  ™     w  p  \ 

~d(Pi>P2>Ps)' 

and  by  the  theory  of  determinants  A=«72- 
Now  J  cannot  vanish,*  for  this  would  imply  the  existence  of  a 

functional  relation  which  would  contradict  the  hypothesis  of  Art.  140 

that  the  p's  can  be  found  as  functions  of  the  as's  from 

F=F1-ai  =  F2-a2  =  0. 

Hence  A^0;    therefore  L  =  M  =  N  =  0. 

*  All  the  equations  of  this  appendix  are  satisfied  identically. 
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Suggestions  for  further  reading 

No  attempt  will  be  made  here  to  give  a  complete  list  of  works  on 
differential  equations.  We  shall  merely  give  the  names  of  a  very 
small  number  of  the  most  prominent,  classified  in  three  sections. 

I.  Chiefly  -of  analytical  interest  (forming  a  continuation  to  Chapter  X.). 

(a)  Forsyth  :  Theory  of  Differential  Equations  (1890  and  later  years, 
Cambridge  Univ.  Press). 

This  important  work  is  in  six  volumes,  and  is  the  most  exhaustive 
treatise  in  English  upon  the  subject.  It  should  not  be  confused  with 
his  more  elementary  work  in  one  volume  (4th  ed.  1914,  Macmillan). 

(b)  Goursat :  Cours  d' Analyse  matMmatiqne,  Vols.  II.  and  III.  (2nd 
ed.  1911-15,  Gauthier-Villars  ;  English  translation  published  by  Ginn). 

This  deals  almost  entirely  with  existence  theorems. 

(c)  Schlesinger  :  Handbuch  der  Theorie  der  linearen  Differential- 
gleichungen  (1895-8,  3  vols,  Teubner). 

II.  Partly  analytical  but  also  of  geometrical  interest. 

(a)  Goursat :  Equations  aux  dirivies  partielles  du  premier  ordre  (1891). 

(b)  Goursat :  Equations  anx  de'rive'es  partielles  du  second  ordre 
(1896-98,  2  vols.,  Hermann  et  fils). 

(c)  Page  :  Ordinary  differential  equations  from  the  standpoint  of  Lie's 
Transformation  Groups  (1897,  Macmillan). 

This  deals  with  the  elements  of  differential  equations  in  a  highly 
original  manner. 

III.  Of  physical  interest  (forming  a  continuation  to  Chapters  III.  and  IV.). 

(a)  Biemann  :  Partielle  Differentialgleichungen  und  deren  Anwendung 
auf  physikalische  Fragen  (1869,  Vieweg). 

(b)  Riemann- Weber :  A  revised  edition  of  (a),  with  extensive 
additions  (1900-01,  Vieweg). 

(c)  Bateman  :  Differential  Equations  (1918,  Longmans). 
This  contains  many  references  to  recent  researches. 

It  is  impossible  to  mention  original  papers  in  any  detail,  but  the 
recent  series  of  memoirs  by  Prof.  M.  J.  M.  Hill  in  the  Proceedings  of  tlie 
London  Mathematical  Society  should  not  be  overlooked. 
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.      dy  ̂ y* +  2,x2y 

y     ()  dx~a?  +  3xyf  [London.] 

?  (2)  £  +  ̂V  =  2«  (1  +  a2).  [London.  ] 

>(3)  tan  ?/  ̂   +  tan  a;  =  cos  y  cos3z.  [London.] 

(4)  ̂ 2*i  +  (!)2  London.] 

(5)  (1  -x2)-£-xy  =  x2y2.  [London.] 

(6)  (Z>2  +  4)*/  =  sin2z.  [London.] 
(7)  (D3-D2  +  3D  +  5)y  =  x2  +  e*cos2x.  [London.] 
(8)  (x3D3  +  x2D2)y  =  l+x  +  x2.  [London.] 
/«»  •       dy 
(9)  cos  x  sin  cc  -—  =  y  +  cos  x.  [London.] 

[London.] 
(10)  ̂ -  =  »  +  y  +  2cos«,- 

dt~6x    y- 

(11)  ̂/  =  a;(^)3  +  l-  [London.] 

(13)  (D4  +  8D2  +  16)?/  =  a;cos2a:.  [London.] 

(14)  I  x2dy+  I  xydx  =  x3.  [London.] 

(15)  (?/2  +  yz  -  z)  dx  +  (x2  +  xz  -  z)  dy  +  (x  +  y-  xy)  dz  =  0.         [London . ] 

(16)  (2x*  -  y3  -  z3)  yz  dx  +  (2y3  -  z3  -  x3)  zx  dy  +  (2z3  -  x3  -  y3)  xy  dz  =  0. [London.] 

(17)  xp-yq  +  (x2-y2)=0.  [London.] 

(18)  (x  +  2y -z)p  +  (3y-z)q  =  x  +  y.  [London.] 
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/■.^v  2  (xz  -  yz  +  xy)     _  _      ,      , 

(19)  xp  +  yq+    \      3X  +  Z      =0'  London.] 

(20)  p(x  +  p)+q(y  +  q)  =  z.  [London.] 

(21)  r  +  s=p.  [London.] 

(22)  z-\px-qy=p2\x2.  [London.] 
(23)  r-x  =  t-y.  [London.] 

(24)  z  =  px  +  qy-sxy.  [London.] 

(25)  z  \rt  -  s2)  +  pqs = 0.  [London.  ] 

(26)  x2r  +  2xys  +  y2t  =  xy.  [London.] 

(27)  rq(q  +  l)-s(2pq+p  +  q  +  l)+tp(p  +  l)=0.  [London.] 

(28)  y3=xy2p  +  x*p2.  [Math.  Trip.] 

(30)  Pi  -  -  i?-  +  x2ny=0.  [Math.  Trip.] ax2     x  ax 

(31)  (zp  +  x)2  +  (zq  +  ij)2  =  l.  .  [Math.  Trip.] (f2y       dy 

(32)  Find  a  solution  of  the  equation  j\-  3  ■—  +  2y  =  e3x  which  shall 

vanish  when  x=0  and  also  when  x  =  loge2.  [Math.  Trip.] 

(33)  Solve  the  equation 
d  oc  doc 

-j-£  +  2k-j-+  (k2  +  \2)x  =  A  cos  pt. 

Show  that,  for  different  values  of  p,  the  amplitude  of  the  particular 

integral  is  greatest  when  p2  =  \2-K2,  and  prove  that  the  particular 
integral  is  then 

(A/2k\)  cos  (pt  -  a),  where  tan  a  =p/k.  [London.] 
(34)  Solve  the  equation 

d2v   dy  o 
T^  +  ~r  tanaj  +  tycos-x  =  0 dxl     ax 

by  putting  z  =  sin  x. 
d2V     d2V    d2V 

(35)  (i)  Assuming  a  solution  of  ■=—, r  +  -r— r  +  -=-=-  =  0  to  be  of  the 
ox1     ay     oz* 

form  F(r  +  z),  where  r2  =  x2  +  y2  +  z2,  obtain  the  function  F  ;   and  by 
integrating  with  respect  to  z,  deduce  the  solution  V  =  z\og  (r  +  z)  -r. 

dV         d2V 
(ii)  Assuming  a  solution   of    _-  =  a2      2  to  be  of  the  form  <f>  {£), 

where  i=x/^/t,  obtain  the  function  <f>;  and  deduce  a  second  solution 
by  differentiating  with  respect  to  ,r.  [London.] 

(36)  Obtain  a  rational  integral  function  V  of  x,  y,  z  which  satisfies 
the  condition  92 j/     92 y     $iy 

dx2     dy2     dz2       ' 
and  is  such  as  to  have  the  value  A:4  at  points  on  the  surface  of  a  sphere 
of  unit  radius  with  its  centre  at  the  origin.  [Math.  Trip.] 
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(37)  Show  that  a  solution  of  Laplace's  equation  V2m  =  0  is 

u  =  (A  cos  116  +  B  sin  nO) e-*2  Jn(\r), 

where  r,  6,  z  are  cylindrical  co-ordinates  and  A,  B,  n,  \  are  arbitrary 
constants.  [London.] 

(38)  Show  that  Jn  (r)  (ancoa  n$  +  bn  sin  nO),  where  r  and  6  are 

polar  co-ordinates  and  an  and  bn  are  arbitrary  constants,  is  a  solution 
of  the  equation  d2V    d2V 

fa*  +  "^2  +  V  =  °-  [London.] 
(39)  Show  how  to  find  solutions  in  series  of  the  equation 

du_   2d2u 
&  =a   dx2' 

and  solve  completely  for  the  case  in  which,  when  x  =  0, 

du     _,       ,  _      ,      , 
w  =  a  -=-  =  0  cosh  £.  [London .] 

(40)  Obtain  two  independent  solutions  in  ascending  powers  of  x  of 
the  equation  ^2?, 

and  prove  by  transforming  the  variables  in  the  equation,  or  otherwise 
that  the  complete  solution  may  be  written  in  the  form 

y  =  AxhJ^  (a;1)  +  Bx*J_h  (x*), 
where  A  and  B  are  arbitrary  constants.  [London.] 

(41)  Show  that  the  complete  solution  of  the  equation 

C^  +  P  +  Qy  +  Ry2  =  0,  R.^-rr. 
where  P,  Q,  R  are  functions  of  x,  can  be  obtained  by  the  substitution 

y  =  yi  +  l/z,  if  a  particular  solution,  ylt  is  known. 
Show  that,  if  two  particular  solutions  yx  and  y2  are  known,  the 

complete  solution  is 

los  \^~i7 ) = \R  (y»  -  yi) dx + const- 

Obtain  the  complete  solution  of  the  equation 

(x2-l)C^  +  x  +  l-(x2  +  l)y  +  (x-l)y2  =  0, 
which  has  two  particular  solutions,  the  product  of  which  is  unity. 

..„.   _,.  ,        ,      ,.«■  •  ,  •  [London.] 
(42)  Show  that  the  differential  equation 

(l-x2)^2  +  2{b  +  (a-l)x}^x  +  2ay=0 

has  a  solution  of  the  form  (1  +x)p(l  -  x)i,  where  p  and  q  are  determinate 
constants.  Solve  the  equation  completely  ;  and  deduce,  or  prove 
otherwise,  that  if  2a  is  a  positive  integer  n,  one  solution  of  the  equation 
is  a  polynomial  in  x  of  degree  n.  [London.] 
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(43)  Verify  that  1  -  x2  is  a  particular  solution  of  the  equation 

x  (1  -  x2)2  ̂|  +  (1  -  x2)  (1  +  3x2)  ̂   +  ix  (1  +  x2)  y =0, 

and  solve  it  completely. 

By  the  method  of  variation  of  parameters  or  otherwise,  solve  com- 
pletely the  equation  obtained  by  writing  (1  -a;2)3  instead  of  zero  on  the 

right-hand  side  of  the  given  equation.  [London.] 

(44)  Show  that  the  complete  solution  of  the  equation 

where  P,  Q  are  given  functions  of  x,  can  be  found  if  any  solution  of  the 
equation  du  j  dp     1 

dx  2&     4 
is  known. 

Hence,  or  otherwise,  solve  the  equation 

(l-x2)g-4^  +  (z*-3)  *,  =  ().  [London.] 

(45)  Prove  by  putting  v  =  wex  that  the  complete  solution  of  the 
d2v         dv  n      , 

equation  x  j-^  -Zn-j-+xv  =  0,  where  n  is  an  integer,  can  be  expressed 
in  the  form 

(A  cosx  +  B  sin  x)f(x)  +  (A  sin  x  -  B  cos  x)  <f>  (x), 

where  f(x)  and  (p  (x)  are  suitable  polynomials.  [London.] 

(46)  If  u,  v  are  two  independent  solutions  of  the  equation 

f^)y"'-f\x)y"  +  (p{x)y'  +  x{x)y  =  0, 
where  dashes  denote  differentiation  with  regard  to  x,  prove  that  the 
complete  solution  is  Au  +  Bv  +  Cw,  where 

f  vf(x)  dx         f   «f  (x)  dx 

J  (uv  -uv)1       J  (uv  -uv)2 
and  A,  B,  C  are  arbitrary  constants. 

Solve  the  equation 

x2(x2  +  5)y'"  -x(7x2  +  25)y"  +  (22x2  +  i0)y'  -30xy=0, 

which  has  solutions  of  the  form  xn.  [London.] 

(47)  Obtain  two  independent  power-series  which  are  solutions  of 
the  equation  dh  d 

(x2  -a2)-T~  +  bx^  +  cm  =  0, ax*         dx 

and  determine  their  region  of  convergence.  [London.] 

(48)  Prove  that  the  equation 
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has  two  integrals 

where  aw  =  (l>  +  l)j    '  [London.] 
(49)  Form  the  differential  equation  whose  primitive  is 

.  /  .          co?a;\       n  (             sinzX 
y  =  A  (  sin  x  +  -  —  J  +  B  (  cos  x   J , 

where  A,  B  are  arbitrary  constants.  [London.] 
(50)  Obtain  the  condition  that  the  equation 

Pdx  +  Qdy  =  0 

may  have  an  integrating  factor  which  is  a  function  of  x  alone,  and  apply 
the  result  to  integrate 

(3xy  -  2a?/2)  dx  +  (x2  -  2axy)  dy  =  0.  [London.  ] 
(51)  Show  that  the  equations 

dy      2ax2   dy     „ 
«/-z/  +  -5 — 2/  =  0, 

dx    x*"  -  y*-  dx 

x2  -  y2  +  2(xy  +  bx2)(^  =  0, 
have  a  common  primitive,  and  find  it.  [London.] 

(52)  Prove  that  any  solution  of  the  equation 

nd2u     ̂ du     n       . 

Pdx~2+Qdx  +  Ru  =  ° 
is  an  integrating  factor  of  the  equation 

d2  d 

dtf{Pu)~Tx{Qu)  +  Ru=0> 
and  conversely  that  any  solution  of  the  latter  equation  is  an  integrating 
factor  of  the  former. 

Hence  integrate  the  first  of  these  equations  completely,  it  being 

given  that  d2  /P\     R     .  rT      ,      . 

p(g)+ra  [London-] 
(53)  If  the  equation     fg[  +  pjp +Qy =0, 

where  P  and  Q  are  functions  of  x,  admits  of  a  solution 
y  =  A  sin  (nx  +  a), 

where  A  and  a  are  arbitrary  constants,  find  the  relation  which  connects 
P  and  Q.  [London.] d2ti 

(54)  Solve  the  equation    — 1-4?/  = 

2y 

dx2       J     (1-x)2' 
having  given  that  it  has  two  integrals  of  the  form 

a  +  bx  . 
[London.] 
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(55)  Show  that  the  linear  differential  equation  whose  solutions  are 

the  squares  of  those  of      -J(  +  p_^  +  nv==o 
dx2       dx    " 

may  be  written  (l+2P)  (g  +  p|  +  20y)  +2q|-0. 
(56)  Show  that  the  total  differential  equation 

3a;2  (y  +  z)  dx  +  (z2  -  Xs)  dy  +  (y2  -  x3)  dz  =  0 
satisfies  the  conditions  of  integrability,  and  integrate  it.         [London.] 

(57)  The  operator  -=-  being  represented  by  D,  show  that  if  X  is  a 

function  of  x  and  <p(D)  a  rational  integral  function  of  D, 

<t>(D)xX=x<j>(D)X  +  <f>'(D)X. 
Extend  the  result  to  the  case  in  which  l/(f>{D)  is  a  rational  integral 

function  of  D. 

Solve  the  differential  equation 
d  u 

—  +  8y  =  3x2  +  xe-2xcosx.  [London.] 

(68)  Show  that  3^  +  4x^-8^  =  0 

has  an  integral  which  is  a  polynomial  in  x.     Deduce  the  general  solution. 
[Sheffield.] 

(59)  Show  that,  if  in  the  equation  Pdx  +  Qdy  + Rdz  =  Q,  P,  Q,  R 
are  homogeneous  functions  of  x,  y,  z  of  the  same  degree,  then  one  variable 
can  be  separated  from  the  other  two,  and  the  equation,  if  integrable, 
is  thereby  rendered  exact. 

Integrate 

z3  (x2dx  +  yHy)  +z{xyz2  +  z4  -  {x2  +  y2)2}  {dx  +  dy) 

+  {x  +  y){zA-  z2  (x2  +  y2)-{x2  +  y2)2}  dz  =  0, 
obtaining  the  integral  in  an  algebraic  form.  [London.] 

(60)  Show  that,  if  the  equation  Pdx  +  Qdy  +  Rdz  =  0  is  exact,  it 
can  be  reduced  to  the  form  X  du  +  mdv  =  0 ;  where  X//x  is  a  function  of 
u,  v  only  and  u  =  constant,  v  =  constant  are  two  independent  solu- 
tions  oi  dx  dy  dz 

?Q_dR~dR_dP~dP_dQ' dz     By      dx     dz      dy     dx 

Hence,  or  otherwise,  integrate  the  equation 

(yz  +  z2)  dx  -  xz  dy  +  xy  dz  =  0.  [London.] 

(61)  Prove  that  z2  =  2xy  is  not  included  in 

x  +  y  +  V(z2  -  2xy)  =f(x  +  y  +  z2), 
which  is  the  general  solution  of 

{2V(z2 - 2xy)  -2x-l}zp  +  {l+2y- 2y/{z2 - 2xy)}zq  =  x-y, 
but  that  it  is  nevertheless  a  solution  of  the  equation.  [Sheffield.] 
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(62)  (i)  Show  how  to  reduce  Biccati's  equation 

^  =  «o  (»)  +  ai  (*)  V  +  a2  (x)  t 

to  a  linear  equation  of  the  second  order ;  and  hence  or  otherwise  prove 

that  the  cross-ratio  of  any  four  integrals  is  a  constant, 

(ii)  Verify  that  \  +  x tan x,  \-x cot x  are  integrals  of 

and  deduce  the  primitive.  [London.] 

(63)  By  solving  ^=  -<oy, 

dy 

~-  =  cox 

dt 

in  the  ordinary  way,  and  eliminating  t  from  the  result,  prove  that  the 
point  (x,  y)  lies  on  a  circle. 

Also  prove  this  by  adding  x  times  the  first  equation  to  y  times  the 
second. 

[The  equations  give  the  velocities,  resolved  parallel  to  the  axes,  of 
a  point  which  is  describing  a  circle  with  angular  velocity  co.] 

(64)  Find  the  orthogonal  trajectories  of  the  curves 

y2  (a-x)=  x3. 
Prove  that  they  reduce  to  the  system 

r2  =  b*(3  +  cos26).  [Sheffield.] 

(65)  -j-  =  ny-mz, 
dy    , 
-~-  =  lz-  nx, 
at 
dz  , 

Tt=mx-ly, where  I,  m,  n  are  constants,  prove  that 
Ix  +  my  +  nz, 

x2  +  y2  +  zz, 

(t)'+(lD'+(l)8 are  all  constant.     Interpret  these  results. 

(66)  A  plane  curve  is  such  that  the  area  of  the  triangle  PNT  is 
m  times  the  area  of  the  segment  APN,  where  PN  is  the  ordinate,  NT 
the  subtangent  at  any  point  P,  and  A  the  origin  ;  show  that  its  equation 

is  y2m-1  =  a2m-2a;. 
Show  that  the  volume  described  by  the  revolution  of  the  segment 

APN  about  the  axis  of  x  bears  a  constant  ratio  to  the  volume  of  the 

cone  generated  by  the  revolution  of  the  triangle  PNT.  [London.] 
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(67)  By  using  the  substitutions  x  =  rcos0,  y  =  r  sin  0,  or  otherwise, 
solve  the  differential  equation 

(x2  +  y2)  (xp  -  y)2  =  1  +  p2. 
Also   find  the  singular    solution,  and  interpret  the  results    geo- 

metrically. [London.] 

(68)  Show  that  the  equation 

(x2  +  y2-  2xpy)2  =  ia2y2  ( 1  -  p2) 

can  be  reduced  to  Clairaut's  form  by  making  y2  -  x2  a  new  dependent 
variable ;   solve  it  and  show  that  the  singular  solution  represents  two 
rectangular  hyperbolas.     Verify  also  that  this  solution  satisfies  the 
given  equation.  [London.] 

(69)  Prove  that  the  curves  in  which  the  radius  of  curvature  is  equal 
to  the  length  intercepted  on  the  normal  by  a  fixed  straight  line  are 
either  circles  or  catenaries.  [London.] 

(70)  Solve  the  equation 

y  =  x-  lap  +  ap2, 

and  find  the  singular  solution,  giving  a  diagram.  [London.] 

(71)  A  plane  curve  is  such  that  its  radius  of  curvature  p  is  con- 
nected with  the  intercept  v  on  the  normal  between  the  curve  and  the 

axis  of  x,  by  the  relation  pv  =  c2.  Show  that,  if  the  concavity  of  the 
curve  is  turned  away  from  the  axis  of  x, 

y2  =  c2  sin2  <p  +  b, 

where  <p  is  the  inclination  of  the  tangent  to  Cx      Obtain  the  value  of 
x  as  a  function  of  (p  in  the  case  &=0;    and  sketch  the  shape  of  the 
curve.  [London.] 

(72)  Show  that,  if  the  differential  equation  of  a  family  of  curves  be 

given  in  bipolar  co-ordinates  r,  /,  6,  6',  the  differential  equation  of  the 
orthogonal  trajectories  is  found  by  writing  rclQ  for  dr,  r' dO'  for  dr', 
-  dr  for  r  d0,  -  dr'  for  r'dQ'. 

Find  the  orthogonal  trajectories  of  the  curves 
a      b -  +  -,  =  o, 
r     r 

c  being  the  variable  parameter.  [London.] 

(73)  The  normal  at  a  point  P  of  a  curve  meets  a  fixed  straight  line 
at  the  point  G,  and  the  locus  of  the  middle  point  of  PG  is  a  straight 

line  inclined  to  the  fixed  straight  line  at  an  angle  cot-1 3.  Show  that 
the  locus  of  P  is  a  parabola.  [London.] 

(74)  Solve  the  equation  2(p-  l)y  =  p2x  ;  show  that  the  "  jo-dis- 
criminant  "  is  a  solution  of  the  equation,  and  is  the  envelope  of  the 
family  of  curves  given  by  the  general  solution.  [London.] 

(75)  Obtain  the  differential  equation  of  the  involutes  of  the  parabola 

y2  =  kax,  and  integrate  it.     What  is  the  nature  of  the  singular  solution  ? 
[London.] 
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(76)  Prove  that  if  the  normals  to  a  surface  all  meet  a  fixed  straight 
line,  the  surface  must  be  one  of  revolution.  [London.] 

(77)  Integrate  the  partial  differential  equation 

px  +  qy  =  y/{x2  +  y2)- 
Give  the  geometrical  interpretation  of  the  subsidiary  integrals  and 

of  the  general  integral.  [London.] 

(78)  Integrate  the  differential  equation 
dz  dz 

z(x  +  2y)^-z(y  +  2x)  ̂    =  y2  - x2. 

Find  the  particular  solutions  such  that  the  section  by  any  plane 

parallel  to  2  =  0  shall  be  (i)  a  circle,  (ii)  a  rectangular  hyperbola. 
[London.] 

(79)  A  family  of  curves  is  represented  by  the  equations 

x2  +  y2  +  6z2  =  a,     2x2  +  by2  +  z2  +  ixy  =  /3, 
where  a,  /3  are  parameters. 

Prove  that  the  family  of  curves  can  be  cut  orthogonally  by  a  family 
of  surfaces,  and  find  the  equation  of  this  family.  [London.] 

(80)  Solve     b(bcy  +  axz)p  +  a(acx  +  byz)q  =  ab(z2-c2), 
and  show  that  the  solution  represents  any  surface  generated  by  lines 
meeting  two  given  lines. 

(81)  (i)  Solve  L^  +  RI  =  E, 
where  L,  R,  and  E  are  constants. 

[This  is  the  equation  for  the  electric  current  /  in  a  wire  of  resistance 

R  and  coefficient  of  self-induction  L,  under  a  constant  voltage  E.) 

(ii)  Determine  the  value  of  the  arbitrary  constant  if  /  =  /0  when 
{  =  0. 

(iii)  To  what  value  does  /  approximate  when  t  is  large  ? 

[Ohm's  law  for  steady  currents.] 

(82)  Solve  L^  +  RI  ==  E cos  pt. 

[The  symbols  have  the  same  meaning  as  in  the  last  question,  except 
that  the  voltage  E  cos  pt  is  now  periodic  instead  of  being  constant. 
The  complementary  function  soon  becomes  negligible,  i.e.  the  free 
oscillations  of  the  current  are  damped  out.] 

(83)  Find  the  Particular  Integral  of 

Td2Q^„dQ    Q 

[This  gives  the  charge  Q  on  one  of  the  coatings  of  a  Leyden  jar 

when  a  periodic  electromotive  force  E  cos  pt  acts  in  the  circuit  con- 
necting the  coatings.  The  Particular  Integral  gives  the  charge  after 

the  free  electrical  oscillations  have  been  damped  out.] 



204  DIFFERENTIAL  EQUATIONS 

(84)  Show  that  the  equations 

are  satisfied  by  the  trial  solution  y  =  nix,  provided  that  m  is  a  root  of 

the  quadratic  2  +  3m_16  +  3m 

7      "2  + 3m' dx 
and  x  is  given  by  7  -= —  (2  +  3m)  £  =  0. 

Hence  prove  that  two  sets  of  solutions  of  the  differential  equations 

are  .  y  =  4:X  =  iAe2t 

and  y  =  -3x=  -3Be~\ 

so  that  the  general  solution  is  x  =  Ae2t  +  Be~l, 

y=4Aeu-3B<rt. 
(85)  Use  the  method  of  the  last  example  to  solve 

7^  +  23s-8t,-0, 

[Equations  of  this  type  occur  in  problems  on  the  small  oscillations 
of  systems  with  two  degrees  of  freedom.  The  motion  given  by  y  =  2x 
(or  by  y  =  -5x)  is  said  to  be  a  Principal  or  Normal  Mode  of  Vibration. 
Clearly  it  is  such  that  all  parts  of  the  system  are  moving  harmonically 

with  the  same  period  and  in  the  same  phase.  If  y  -2x  and  y  +  5x  are 
taken  as  new  variables  instead  of  x  and  y,  they  are  called  Principal  or 
Normal  Coordinates.] 

(86)  Given  that  L,  M,  N,  R,  S  are  positive  numbers,  such  that  LN 

is  greater  than  M2,  prove  that  x  and  y,  defined  by 
T  dx     ,  r  dy     _ 
at  at 

diminish  indefinitely  as  t  increases. 

[Show  that  x  =  Aeat  +  Bebt  and  y=  Eeal  +  Feht,  where  a  and  b  are 
real  and  negative.  These  equations  give  the  free  oscillations  of  two 
mutually  influencing  electric  circuits.  L  and  N  are  coefficients  of 
self-induction,  M  of  mutual  induction,  and  R  and  S  are  resistances.] 

(87)  Show  (without  working  out  the  solutions  in  full)  that  the 
Particular  Integrals  of  the  simultaneous  equations 

T  dx     ,.  dy     _        Cxdt     T,    . 
L  ..--  +  M  /  +  Rx+\  —  =  E  sin  pt, at         at  J  c 

,_  dx     „T  dy 

dt  dt        J 
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are  unaltered  if  in  the  first  equation  the  term  I    dt  is  omitted  and  L 

is  replaced  by  L   ^. 

[This  follows  at  once  from  the  fact  that  the  Particular  Integrals  are 

of  the  form  A  sin  (pt  -  a). 
These  equations  give  the  currents  in  two  mutually  influencing 

circuits  when  the  primary,  which  contains  a  condenser  of  capacity  c, 
is  acted  upon  by  an  alternating  electromotive  force.  This  example 

shows  that  the  effect  of  the  condenser  can  be  compensated  for  by  in- 
creasing the  self-induction.] 

<88> H  *£+*  g4f.*-/w 
and  Mp+Nf  =  0, at  at 

where  LN  -  Mz  is  a  very  small  positive  quantity,  show  that  the  Com- 
plementary Function  for  x  represents  a  very  rapid  oscillation. 

[These  equations  occur  in  Rayleigh's  theory  of  the  oscillatory  dis- 
charge of  a  condenser  in  the  primary  circuit  of  an  induction  coil  with 

a  closed  secondary.  Notice  that  the  second  equation  shows  that  the 
secondary  current  is  at  its  maximum  when  the  primary  current  is  at  its 

minimum.     See  Gray's  Magnetism  and  Electricity,  Arts.  489  and  490.] 
(89)  Prove  that  the  Particular  Integrals  of  the  simultaneous  equations 

m     ̂   =  -a(x-X)  +  k  cos  ft, 

d2X 

M   ,¥  =  - AX  +  a(x- X) dr 
Bk 

may  be  written  x  =  -s — 5-^  cos  pt, a*  -  bB 

v       -ak 

X  =  a?~bBC0Spt> 
where  b  =  mj>2  -a  and  B  =  Mp2  -  (a  +  A ). 

Hence  show,  that  x  and  X  are  both  infinite  for  two  special  values 
of  p. 

[These  equations  give  the  oscillations  of  the  "  elastic  double  pen- 
dulum." Masses  m  and  M  are  arranged  so  that  they  can  only  move 

in  the  same  horizontal  line.  A  spring  connects  M  to  a  fixed  point  of 
this  line  and  another  spring  connects  m  to  M.  A  periodic  force  acts 

upon  m,  and  the  solution  shows  that  both  masses  execute  forced  vibra- 
tions whose  amplitude  becomes  very  large  for  two  special  values  of  p. 

Of  course  this  is  the  phenomenon  of  Resonance  again.  It  is  important 
to  notice  that  the  values  of  p  that  give  resonance  in  this  case  are  not 
the  same  as  they  would  be  if  only  one  mass  were  present.  This  may 

be  applied  to  the  discussion  of  the  "  whirling  "  in  a  turbine  shaft. 
See  Stodola's  Steam  Turbine.] 
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(90)  Show  that  the  solution  of  the  simultaneous  equations 

($m  +  M)4a™+2Mb<^£=  Tg{m  +  2M)e, 

where  m  —  M  and  a  =  b,  may  be  expressed  by  saying  that  6  and  <p  are 
each  composed  of  two  simple  harmonic  oscillations  of  periods  2ir\px  and 

27r/p2,  Pi2  and  p£  being  the  roots  of  the  quadratic  in  p2,  - 

28a  V  -  8iagp2  +  27 g2  =  0. 
[These  equations  give  the  inclinations  to  the  vertical  of  two  rods 

of  masses  m  and  M  and  lengths  2a  and  26  respectively  when  they  are 
swinging  in  a  vertical  plane  as  a  double  pendulum,  the  first  being  freely 
suspended  from  a  fixed  point  and  the  second  from  the  bottom  of  the 
first.  The  two  oscillations  referred  to  are  known  as  the  Principal  (or 
Normal)  Oscillations.  Similar  equations  occur  in  many  problems  on 

small  oscillations.  A  detailed  discussion  of  these  is  given  in  Routh's 
Advanced  Rigid  Dynamics,  with  special  reference  to  the  case  when  the 
equation  in  p  has  equal  roots.] 

<9i>  %+4+**-°< 
d2y       dx 

d¥~Kdt 
[These  equations  give  the  motion  of  the  bob  of  a  gyrostatic  pen- 

dulum which  does  not  swing  far  from  the  vertical.  Notice  that  if  the 

initial  conditions  are  such  that  5  =  0,  we  get  motion  in  a  circle  with 
angular  velocity  p,  while  if  A  =  0,  we  get  motion  in  a  circle  with  angular 
velocity  q  in  the  opposite  sense.     (For  p,  q,  A,  B  see  the  answers.) 

Similar  equations  hold  for  the  path  of  revolving  ions  in  the  ex- 
planation of  the  Zeemann  Effect  (the  trebling  of  a  line  in  a  spectrum 

by  a  magnetic  field).  See  Gray's  Magnetism  and  Electricity,  Arts. 
565-569.] 

(92)  Given  (dx 

dT  +  aX  =  °> 
dz    7 

dt=hj>
 

x  +  y  +  z  =  c, 
where  a,  b,  c  are  constants,  obtain  a  differential  equation  for  z. 

dz 
Hence  prove  that  if  2=      =0  when  t  —  0, 

z  =  c  +   ,:  \be~at  -  ae~he\. a-b 

[These  equations  occur  in  Physical  Chemistry  when  a  substance  A 
forms  an  intermediate  substance  B,  which  then  changes  into  a  third 

—  +  c2!/  =  0. 
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substance  C.     x,  y,  z  are  the  "  concentrations  "  of  A,  B,  C  respectively 
at  any  time  t.     See  Harcourt  and  Esson,  Phil.  Trans.  1866  and  1867.] 

(93)  The  effect  on  a  simple  dynamical  system  with  one  degree  of 
freedom  of  any  other  dynamical  system  to  which  it  is  linked  can  be 
represented  by  the  equation 

x  +  1/j.x  +  n2x  —  X. 
If  the  exciting  system  of  waves  is   maintained  steady  so  that 

X  =  A  cos  pt,  find  the  value  of  p  for  which  there  is  resonance,  and  prove 
that  if  fx  exceeds  a  certain  value  there  is  no  resonance.     Draw  curves 

illustrating  both  cases.  [Math.  Trip.] 

(94)  Solve  the  differential  equation 

x  +  2hx  +  n2x  ==  0  when  k2  <  n2. 

In  the  case  of  a  pendulum  making  small  oscillations,  the  time  of  a 
complete  oscillation  being  2  sees,  and  the  angular  retardation  due  to 

the  air  being  taken  as  -04  x  (angular  velocity  of  pendulum),  show  that 

an  amplitude  of  1°  will  in  10  complete  oscillations  be  reduced  to  about 

40'.     [Take  logi0e= -4343.]  [Math.  Trip.] 
(95)  The  motion  of  a  system  depends  practically  on  a  single  co- 

ordinate x  ;  its  energy  at  any  instant  is  expressed  by  the  formula 

\mx2  +  ̂ex2 ;  and  the  time-rate  of  frictional  damping  of  its  energy  is 
\kx2.     Prove  that  the  period  (t0)  of  its  free  oscillation  is 

2-(£-r^)"4- 
\m     16  »iv 

Prove  that  the  forced  oscillation  sustained  by  a  disturbing  force  of 

e       k2 type  A  cos  pt  is  at  its  greatest  when  p2  —  ■   — ^ ,  and  that  the  amplitude 

of  this  oscillation  is  then  — ^°,  while  its  phase  lags  behind  that  of  the 7T/C 

force  by  the  amount  tan-1-^.  [Math.  Trip.] 

1  /ds\2 (96)  Show  that  the  substitution  T  =  -  ( -j  j  reduces 

d2s     D/M2    n 

cti2+P\dt)=Q dT 
to  the  linear  form  -T-+2PT  =  Q. 

as 

From  (,  +  o)g +  (*)".  (,_«,)* ds 
with  the  conditions   .  =0  and  s  =  2a  when  t  =  0,  obtain dt 

dt)   =  lp-2a) . 
 

d2s    g 
and  ^=3- 
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[This  gives  the  solution  of  the  dynamical  problem  :    "  A  uniform 
chain  is  coiled  up  on  a  horizontal  plane  and  one  end  passes  over  a' 
smooth  light  pulley  at  a  height  a  above  the  plane  ;   initially  a  length  I 
2a  hangs  freely  on  the  other  side.     Prove  that  the  motion  is  uniformly 

accelerated."     See  Loney's  Dynamics  of  a  Particle  and  of  Rigid  Bodies, 
p.  131.] 

(97)  Find  a  solution  of  the  equation 

1/^+—- (sin  0*^-0 
drV  dr)+smede\    ̂ de)~v 

of  the  form  <j>  =f{r)  cos  d, 

given  that  —  ~-  =  V  cos  Q  when  r  =  a 
or 

and  —  -^-  =  0  when  r  —  co  . or 

\(f>  is  the  velocity-potential  when  a  sphere  of  radius  a  moves  with 
velocity  V  in  a  straight  line  through  a  liquid  at  rest  at  infinity.  See 

Ramsey's  Hydro- Mechanics,  Part  II.  p.  152.] 

(98)  Find  a  solution  of        Ji=c2rr{ 

which  shall  vanish  when  x  —  0,  and  reduce  to  A  cos  (pt  +  a)  when  x  =  b. 
[This  gives  the  form  of  one  portion  of  a  stretched  string,  fixed  at 

both  ends,  of  which  a  given  point  is  made  to  move  with  the  periodic 
displacement  A  cos  (pt  +  a).  The  portion  considered  is  that  between  the 

given  point  and  one  of  the  ends.  See  Ramsey's  H ydro- Mechanics, 
Part  II.  p.  312.] 

(99)  Obtain  the  solution  of 

~3t2         \di*     r  dr) 

in  the  form  r<p=f(ct-r)  +  F(ct  +  r). 

[0  is  the  velocity-potential  of  a  spherical  source  of  sound  in  air. 
See  Ramsey,  p.  345.] 

(100)  Obtain  a  solution  of 

dx2     dy2       ' 
such  that  d<f)/dy  =  0  when  y=  -h 

and  (j>  varies  as  cos  (mx-nt)  when  y  =  0. 

[0  is  the  velocity-potential  of  waves  in  a  canal  of  depth  h.  the  sides 
being  vertical.     See  Ramsey,  p.  265.] 

(101)  Obtain  the  solution  of  the  simultaneous  differential  equations 

d2x     .    di)       0       _ 

(fr!-2„rf/+r,  =  0, d2)/     n    d.r       „ 
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with  the  initial  conditions 

dx    .      dy     . 

"-*  »-<>■  s-*  l=°- 

in  the  form  z  =  — {(</  +  w)  e'^ -">'  +  (£ -n)e-*fa+n)'}, 

where  z  =  x  +  iy    and    g  =  \/(pa  +  w2). 

Show  that  the  solution  represents  a  hypocycloid  contained  between 
two  concentric  circles  of  radii  a  and  an/q. 

[This  example  gives  the  theory  of  Foucault's  pendulum  experiment 
demonstrating  the  rotation  of  the  earth.  See  Bromwich,  Proc.  London 
Math.  Soc.  1914.] 

(102)  Obtain  an  approximate  solution  of  Einstein's  equation  of 
planetary  motion  g2u  ^ 

in  the  following  manner  : 

(a)  Neglect  the  small  term  3mu2,  and  hence  obtain 

u  =  j-^{l+e  cos  (0-d)},  as  in  Newtonian  dynamics. 

(b)  Substitute  this  value  of  u  in  the  small  term  3mu2,  and  hence 
obtain 

d2u  m     3m3     6m3  .  .     3/n3e2  ,  n.  0 

dlb*+u==h2  +  ~W  +  l^e  cos  ̂~ct)  +  ~W^      os  2(^~CT)}- 

(c)  Neglect  all  the  terms  on  the  right-hand  side  of  this  differe  itial 

equation  except  ,-2  and  -jj-  e  cos  (<p  -  ct).     The  term  in  cos  (<p  -  ~)  mist 

be  retained  ;  it  is  of  the  same  period  as  the  complementary  function,  and 
therefore  produces  a  continually  increasing  particular  integral.  [See  the 
resonance  problem  Ex.  36  on  p.  46.]     Hence  obtain 

m  (,  .  .     3m2         .     .  .1 
w  =  /2jl  -fecos  {(ji  -  w)  +  -p-  e0  sin  (0  -ts)  Y 

AM 

=   2{1  +  e  cos  ((f>  -  &  -  e)}  approximately, 

where  e  =  ̂ -2-  <f>  and  e2  is  neglected. 

[This  result  proves  that  when  the  planet  moves  through  one  revolu- 
tion the  perihelion  (given  by  <p  -  T3  -  e  =  0)  advances  a  fraction  of  a 

revolution  eiven  by  -  =    7o  •     When  numerical  values  are  given  to  the 
&  J  <p       h2 

constants  it  is  found   that  Einstein's  theory   removes  a  well-known 
discrepancy  between  observed  and  calculated  results  on  the  motion 

of  the  perihelion  of  Mercury.     See  Eddington,  Report  on  the  Relativity 

Theory  of  Gravitation,  pp.  48-52.] 



210  DIFFERENTIAL  EQUATIONS 

(103)  L(x,  y,  x',  y')  is  a  function  of  the  variables  x,  y,  x',  y' . 
X,  Y  are  denned  by  the  equations 

X-—    y=— 
dx"  dy' 

If  these  equations  can  be  solved  for  x'  and  y'  as  functions  of  X,  Y,  x,  y, 
and  if  H  (X,  Y,  x,  y)  is  the  function  obtained  by  expressing 

Xx'  +  Yy'-L 
entirely  in  terms  of  X,  Y,  x,  y,  then  prove  that 

£-*   4 
and  IST'to   (2) 

Prove  also  that  the  equation 

dAdx'J   dx    K} 

is  transformed  into  -=-  =  -  -=—   (4) at  ox 

[This  is  the  Hamiltonian  transformation  in  dynamics.  Equation  (3) 

is  a  typical  Lagrangian  equation  of  motion  in  generalised  co-ordinates. 

Hamilton  replaces  it  by  the  pair  of  equations  (1)  and  (4).  See  Routh's 
Elementary  Rigid  Dynamics,  Chap.  VIII.  This  transformation  should 
be  compared  with  that  of  Ex.  21  of  the  miscellaneous  set  at  the  end  of 
Chap.  XII.,  where  we  had  two  partial  differential  equations  derivable 
from  each  other  by  the  Principle  of  Duality.] 

(104)  Show  that  Jacobi's  method  (Art.  140)  applied  to  Hamilton's 
partial  differential  equation 

^  +  H(xv  x2>  ...  x„,  pv  p2,  ...  p„,  «)  =  0 

dx,.     BH      dpr        dH 

leadSt°  W=Wr'      ̂ ='dxr      <r==1>2'-W>' 

which  are  the  equations  of  motion  of  a  dynamical  system,  in  Hamilton's 
form.     [See  Whittaker's  Analytical  Dynamics,  2nd  ed.,  Art.  142.] 

(105)  (i)  Prove  that  if        u(x,  y,  z)  =  a 

and  v(x,  y,  z)  =  b 

are  any  two  integrals  of  the  system  of  differential  equations 

dx  dy  dz 

p(x,y,z)     q(x,y,z)     r(x,y,z)' v)     1  d(u,  v)     1  d(u,  v) 

z)     q  d(z,  x)     r  d{x,y) 

[m  is  called  a  multiplier  of  the  system.] 

1  dlu,  v)     1  d(u,  v)     1  d(u,  v)        ,  . 
then  -  -7   r  =  -  a7   r  =  -  ,T — .-  =  m  (x,  y,  z),  say. p  o{y,  z)     q  d(z,  x)     r  d(x,  y) 



MISCELLANEOUS  EXAMPLES  211 

(ii)  Show  that  m  satisfies  the  partial  differential  equation 

(iii)  If  n(x,  y,  z)  is  any  other  multiplier  of  the  system,  show  that 

d  /m\        d  /m\        d  /ra\  _ 

dx\n/       dy\nJ       dz\nJ      ' 
u ( IYI iVh    It    1)) 

and  hence  that  -W—2 — '-r-  =  0  identically, d(x,y,z) 

so  that  m/n  is  a  function  of  u  and  v,  and  m/n  =  c  is  an  integral  of  the 
original  system  of  differential  equations. 

(iv)  If  u(x,  y,  z)=a  can  be  solved  for  z,  giving  z=f{x,  y,  a),  and 
if  capital  letters  V,  P,  Q,  R,  M  denote  the  functions  of  x,  y,  a,  obtained 
by  substituting   this   value   of  z   in  v,  p,  q,  r,  m,    then  prove    that 

doc     du 

V(x,  y,  a)  =  6  is  an  integral  of  —  =  ~ . 

BV  du 
Prove  also  that  MP  =  —  -=—  «- 

ay  oz 
7i^        dV  du 

and  MQ=    Txdz 
where  =-  is  to  be  expressed  in  terms  of  x,  y,  a),  so  that 

dV  =  M(Qdx-Pdy)ldd". 
[This  suggests  that  if  any  integral  u=a  and  any  multiplier  m  are 

known,  then  M(Qdx-Pdy)l ^  will  be  a  perfect  differential,  leading 

to  an  integral  of  the  system  when  a  is  replaced  by  u(x,  y,  z). 

For  a  proof  of  this  theorem  see  Whittaker's  Analytical  Dynamics, 
2nd  ed.,  Art.  119.  A  more  general  theorem  is  that  if  (n-1)  integrals 
of  a  system  of  differential  equations 

dxx     dx2  _      _  dxn  _  dx 

V\~  V2~'"~  Pn       V 

are  known  and  also  any  multiplier,  then  another  integral  can  be  deter- 
mined.    This  is  generally  referred  to  as  the  theorem  of  Jacobis  Last 

Multiplier.     In  Dynamics,  where  this  theorem  is  of  some  importance 
(see  Whittaker,  Chap.  X.),  the  last  multiplier  is  unity.] 

(v)  Show  that  unity  is  a  multiplier  of 

dx  dy  dz 

xz  -2y     2x-  yz     y2  -  x2 
and  s2+?/2  +  22  =  aan  integral,  say  u(x,  y,  z)=a. 

Show  that  in  this  case 

M(Qdx-Pdy)l^  =  d{-lxy-V(a-x2-yz% 

and  hence  obtain  the  second  integral  xy  +  2z  =  b. 
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n 

(106)  Show  that  if  y  =  1  e*'/(0  dt,  where  a  and  6  are  constants,  then 
J  a 

•      x^{^y+^{T^y=ehx^{h)f{h)~^x^{a)f{a) 

-(W(O/'(«)+0'(O/W-^W/«}& 
J  a 

Hence  prove  that  y  will  satisfy  the  differential  equation 

if  ^>W/(0  =  exp{J^|^} 
and  ebx(p(b)f(b)=0  =  etlx(f>(a)f(a). 

Use  this  method  to  obtain 

^  J  -oo  V(^-l)  J-l         V('2-l) 
as  a  solution,  valid  when  x>0,  of 

The  corresponding  solution  for  the  case  x<0  is  obtained  by  taking 

the  limits  of  the  first  integral  as  1  to  oc  ,  instead  of  -co  to  -1. 

[Exs.  106-108  give  some  of  the  most  important  methods  of  obtaining 
solutions  of  differential  equations  in  the  form  of  definite  integrals.] 

(107)  Verify  that     v  =  v0  +  ̂ -\  e~*dz 

,   ,.        ,  dv       d2v is  a  solution  of  ~=K~-, 

ot        ox1 
reducing,  when  t  =  0,  to  v0+  V  for  all  positive  values  of  x  and  to  v0  -  V 
for  all  negative  values. 

[v  is  the  temperature  at  time  t  of  a  point  at  a  distance  x  from  a 
certain  plane  of  a  solid  extending  to  infinity  in  all  directions,  on  the 
supposition  that  initially  the  temperature  had  the  two  different  constant 

values  v0+  V  and  v0-  V  on  the  two  sides  of  the  plane  x  =  0. 
Kelvin  used  this  expression  for  v  in  his  estimate  of  the  age  of  the 

earth  (see  Appendix  D  of  Thomson  and  Tait's  Natural  Philosophy).  The 
discovery  that  heat  is  continually  generated  by  the  radio-active  dis- 

integration of  the  rocks  introduces  a  new  complexity  into  the  problem.] 

(108)  (a)  Show  that 

V=  [    elx+my+nzf(s,  t)  ds  dt 

(the  limits  being  any  arbitrary  quantities  independent  of  x,  y.  z)  is  a 
solution  of  the  linear  partial  differential  equation  with  constant 
coefficients  /  a      a      7)\ 

F[      ,       ,       J V=0 \dx    dy    dz/ 
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if  I,  m,  n  are  any  constants  or  functions  of  s  and  t  such  that 

F(l,  m,  n)  =  0. 
Extend  the  theorem  to  the  case  when  there  are  n  independent 

variables  x,  y,  z,  ... ,  and  (n  - 1)  parameters  s,  t,  ...  . 

Obtain  V=  f    #lxcoat+**int+u)f(8,  t)  ds dt 

as  a  solution  of  ^  +  -~~2  =  a-'  P1-  Todd.] 

(P)       r)       F
)\ «-,_-,  p-j  F     0    is   a   homogeneous 

   
linear 

partial  differential  equation  with  constant  coefficients  a  solution  is 

]/d 

x  +  my  +  nz,  t)  dt, 

where  the  limits  are  any  arbitrary  quantities  independent  of  x,  y,  z,  and 
I,  m,  n  are  any  constants  or  functions  of  t  such  that 

F(l,  m,  n)  =  0. 
Extend  the  theorem  to  the  case  when  there  are  n  independent 

variables  and  (n  -  2)  parameters.     [See  H.  Todd,  Messenger  of  Mathe- 
matics, 1914.] n. 

Obtain  7=1    f(x  cos  t  +  y  smt  +  iz,  t)  dt 

d2V     d*V     d2V     . 
as  a  solution  of  =  .,-  +  -=-=•  +  -=-r-  =0. 

ox*      oy£      ozl 

[Whittaker's  solution  of  Laplace's  equation.] 
(109)  By  substituting  the  trial  solution a,     a9 

y  =  ao+x  +  x%  +  ~' 
.._         .  ,  .  dy  1 

in  the  differential  equation        -=-  +  y  =  - , 

0!     1!     2!     3! 
obtain  the  series  y  =  — I-    „  +      +    .+.... x      x£     x6     xr 

Prove  that  this  series  is  divergent  for  all  values  of  x. 

Obtain  the  particular  integral 

y  =  e~x  I       —  dx, 

J  -00     X and  by  repeated  integration  by  parts  show  that 

C'     e*  7      0!      1!     2!  n!  ,  f '     (n+l)!e* 
ex\       —dx  =  -  +  -9  +-=  +  ...+  -— i  +  e  J  — -is      dx. 

j_M    X  X  X?         XA  Xn+1  J   -r.  Z»+2 

Hence  prove  that  if  x  is  negative  the  error  obtained  by  taking  n 

terms  of  the  series  instead  of  the  particular  integral  is  less  than  the 

numerical  value  of  the  (n  +  l)th  term. 

[Such  a  series  is  called  asymptotic.  See  Bromwich's  Infinite  Series, 
Arts.  130-139.] 
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(110)  Show  that  if  the  sequence  of  functions  fn  (x)  be  defined  by 

f0(x)=a  +  b(x-c),  where  a,  b,  c  are  constants, 

and  /„(*)  =  JV*)^(0/«-i(0^ 

d2 

t
h
e
n
 
 

dx^
n{x

)  

=  ~  F{x
)f»

-i(
x)'

 

00 

Hence  show  that  y  =  ̂fn{%)  is  a  solution  of o 

provided  that  certain  operations  with  infinite  series  are  legitimate  (for 

a  proof  of  which  see  Whittaker  and  Watson's  Modern  Analysis,  p.  189. 
They  give  a  proof  of  the  existence  theorem  for  linear  differential  equa- 

tions of  the  second  order  by  this  method). 

(111)  Prove  that  the  solution  of  the  two  simultaneous  linear  differ- 
ential equations  with  constant  coefficients 

f(D)x  +  F(D)y=0, 

<t>(D)x  +  \f,(D)y=0 
(where  D  stands  for  d/dt),  may  be  written 

x  =  F(D)V, 

y=-f(D)V, 

where  V  is  the  complete  primitive  of 

{f(D)yl,(D)-F(D)<t>(D)}V=0. 
Hence  show  that  if  the  degrees  of/,  F,  0,  \js  in  D  be  p,  q,  r,  s  respec- 

tively, the  number  of  arbitrary  constants  occurring  in  the  solution  will 
in  general  be  the  greater  of  the  numbers  (p  +  s)  and  (q  +  r),  but  if 

(p  +  s)  —  (q  +  r)  the  number  of  arbitrary  constants  may  be  smaller,  and 
may  even  be  zero   as  in  the  equations 

(D  +  l)x  +  Dy=0, 

(D  +  3)x  +  (D  +  2)y  =  0. 

(112)  (a)  Prove  that  if  y  =  u(x), 
y  =  v(x) 

are  any  two  solutions  of  the  linear  differential  equation  of  the  first  order 

P(x)yi+Q(x)y=0, 

then  (t'ux  -  uvj/u2  =  0, 
so  that  v  =  au,  where  a  is  a  constant. 

(b)  Prove  that  if  y  =  u(x), 
y  =  v(x), 

y  =  w(x) 
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are  any  three  solutions  of  the  linear  differential  equation  of  the  second 
order  P{x)y2  +  Q(x)yi  +  R{x)y  =  0, 

then  P  -=-  («Wi -  vwx)  +Q(wv1  -  vwj)  =  0 

and  P  -j-iuvi-vu^+Qi^-viij)  =  0. 

Hence  show  that  w  =  au  +  bv. 

[By  proceeding  step  by  step  in  this  manner  we  may  show  that  a 

differential  equation  of  similar  form  but  of  the  nth  order  cannot  have 
more  than  n  linearly  independent  integrals.] 

(113)  Let  u,  v,  w  be  any  three  functions  of  x. 

Prove  that  if  constants  a,  b,  c  can  be  found  so  that  y=au  +  bv  +  cw 
vanishes  identically,  then 

U     V     w 

ux  vx  wx    =0, 
u2  v2  wt 

while  conversely,  if  this  determinant  (the  Wronskian)  vanishes,  the 
functions  are  not  linearly  independent. 

Extend  these  results  to  the  case  of  n  functions. 

[Consider  the  differential  equation  of  the  second  order  formed  by 
replacing  u,  uv  u2  in  the  determinant  by  y,  yv  y2  respectively.  Such 
an  equation  cannot  have  more  than  two  linearly  independent  integrals. 

The  Wronskian  is  named  after  Hoene  Wronski,  one  of  the  early 
writers  on  determinants.] 

(114)  Prove  that  z  =  eix(t~1/t)  satisfies  the  partial  differential  equation 

Hence,  if  J n{x)  is  defined  as  the  coefficient  of  tn  in  the  expansion 

e^-m^-^tnJn(x), 

prove  that  y  =  Jn(x)  satisfies  Bessel's  equation  of  order  n, 

[The  operations  with  infinite  series  require  some  consideration.] 

(115)  If  uj:  denotes  a  function  of  x,  and  E  the  operator  which  changes 
ux  into  ux+1,  prove  the  following  results  : 

(i)  Eax  =  a  .  ax,  i.e.  {E-a)ax  =  Q. 

(ii)  E2ax  =  a2  .  ax. 

(iii)  E(xax)  =  a{xax)+a  .  ax,  i.e.  (E-a)(xax)=a  .  a*. 

(iv)  (E-a)*(xax)=0. 

(v)  (p0E2+p1E+p2)ax  =  (pQa2+p1a+p2)ax,  if  thep's  are  constant. 
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(vi)  ux=Aax+Bbx  is  a  solution  of  the  linear  difference  equation 

PoUx+z+PiUx+1+p2ux  =  0, 

i.e.     {p0E2  +  p1E+p2)ux=0, 
if  A  and  B  are  arbitrary  constants  and  a  and  b  the  roots  of  the  auxiliary 

equation  p0m2  +  ̂ m^-  p2  =  0.     (Cf.  Art.  25.) 

Solve  by  this  method   (2£2  +  5E  +  2)  ux  =  0. 

(vii)  ux  =  {A  +  Bx)ax  is  a  solution  of  (E2-2aE  +  a2)ux  =  0. 
Here    the    auxiliary    equation   m2-2am  +  a2  =  0    has    equal  roots. 

(Cf.  Art.  34.) 

(viii)  ux  =  rx(P  cos  xd  +  Q  sin  x6)  is  a  solution  of 

(PoE2+PiE  +  Pz)ux  =  ̂ 
if  P  and  Q  are  arbitrary  constants,  p±iq  the  roots  of  the  auxiliary 

equation  p0m?  +p1m+p2  =  0 

and  p +  iq  =  r  (cos  0  +  i  sin  6).     (Cf.  Art.  26.) 

Solve  by  this  method  (E2-2E  +  i)ux  =  0. 

(ix)  The  general  solution  of  a  linear  difference  equation  with  constant 
coefficients 

F(E)=(p0En+p1E"-i  +  ...+pn_1E  +  pn)ux=f(x) 
is  the  sum  of  a  Particular  Integral  and  the  Complementary  Function, 
the  latter  being  the  solution  of  the  equation  obtained  by  substituting 

zero  for  the  function  of  x  occurring  on  the  right-hand  side.  (Cf. 
Art.  29.) 

(x)  ax/F(a)  is  a  particular  integral  of 

F(E)ux  =  ax, 
provided  that  F(a)=f=0.     (Cf.  Art.  35.) 

Solve  by  this  method  (E2  +  8E  -  9) ux  =  2x. 

[For  further  analogies  between  difference  equations  and  differential 

equations,  see  Boole's  Finite  Differences,  Chap.  XL] 
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ANSWERS  TO  THE  EXAMPLES 

CHAPTER  I. 

Art.  5. 

(5)  The  tangent  to  a  circle  is  perpendicular  to  the  line  joining  the 
point  of  contact  to  the  centre. 

(6)  The  tangent  at  any  point  is  the  straight  line  itself. 
(7)  The  curvature  is  zero. 

Art.  8. 
Sf*2  /y3  /y>4 

(1)  y  =  a  +  ax  +  a^  +  a^  +  a-rj  + ...=aex. 

(2)  y  =  a  +  bx  -  a  —^  -  6  —}  +  a  jy  + . . .  =  a  cos  x  +  b  sin  x. 

Miscellaneous  Examples  on  Chapter  I. 

<3>  3-«  *+*-* 

(^>»4IW{-(in]-V{-(2)T     «3-* 

« Mg)T=°<g)a.  -  >*- • 

(12)  y  =  aex  +  ber*.  (14)  60°  and  -60°. 
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(15)  Differentiate  and  put  x  =  l,  y  =  2.     This  gives    ~  and  hence  p. 

(17)  (i)  z  +  l=0;    (ii)  y2  =  x2  +  6x  +  l. 

CHAPTER  II. 

Art.  14. 

(1)  6x2  +  5xy  +  y2  -9x  -  Ay  =  c.  (2)  sina;tan?/  +  sin(a;  +  ̂ )  =  c. 

(3)  sec x tan y - ex  =  c.  (4)  x-y  +  c  =  \og(x  +  y). 

(5)  x  +  yex3  =  cy.  (6)  y  =  cx. 
(7)  e?/(sina;  +  cosa;)=c.  (8)  x*y  +  icy  +  4  =  0. 

(9)  yex-cx.  (10)  sin  a;  cos  y  =  c. 

Art.  17. 

(1)  (x  +  y)z  =  c{x-y).  ^$2)  z2  +  2?/2(c  +  log  y)=0. 

*(3)  a;?/2  =  c(a;-?/)2.  (4)  ca;2  =  ?/  +  -v/(cc2  +  ?/2). 

(5)  (2x-y)2  =  c{x  +  2y-5).                 (6)  (z  +  5?/-4)3(3a:  +  2?/  +  l)  =  c. 

(7)  x-y  +  c  =  log(3x-4:y  +  l).            (8)  3z-3?/  +  c  =  2  log(3x  +  6y-l). 

Art.  21. 

(1)  2y  =  (x  +  a)5  +  2c(x  +  a)z.  (2)  x#  =  sin  x  +  c  cos  x. 

(3)  2/  log  x  =7Jtag\)^£.  (4)  cc3  =  ̂ /3(3sina;4-c). 

!  (5)  y2(x  +  cex)  =  l.  (o)  x  =  y3  +  cy.  (7)  a?  =  e~!'(c  +  tan  y). 

Art.  22. 

(1)  The  parabola  y2  =  4ax  +  c. 

(2)  The  rectangular  hyperbola  xy  =  c2. 

(3)  The  lemniscate  of  Bernoulli  r2  =  a2sm20. 

(4)  The  catenary  y  =  k  cosh  -^— .  (5)  xy  —  c2..  \J 

(6)  i/S  =  a;§  +  c§.  (7)  yv  =  c&.  (8)  r2  =  ce^. 

(9)  log  r  + 102  +  JO3  - c.     (10)  The  equiangular  spirals  r  =  ce±e  tan a. 

Miscellaneous  Examples  on  Chapter  II. 

V  (1)  xy  =  y*  +  c.  (2)  cx*  =  y  +  ̂ /(y2-x2). 

(3)  sin  xsiny  +  e 8in  r  =  c.  (4)  2x2  -  2xy  +  3y  +  2cx2y  =  0. 

(5)  cxy  =  y  +  \/(y2-x2).  (11)  x3y~2  +  2x5y~'i  =  c. 

(12)  tan-1(^)+log(«/2/)=c.              (14)  (x2-l+y*)ex*  =  c. 
(15)  (i)  The  Reciprocal  Spiral  r(0-a)  =  c. 

(ii)  The  Spiral  of  Archimedes  r  =  c(6-a). 

(16)  The  parabola  Sky2  =  2x.  (18)  x  =  y(c  -k  log  y). 
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(19)  (i)  a?  +  (y-c)2  =  l  +C2,  a  system  of  coaxal  circles  cutting  the  given 
system  orthogonally, 

(ii)  r2  =  ce-63.  (id)  n2  =  r{c  +  log(cosec  nQ  +  cot  n$)}. 

<*»  ("'gX-'D-f -»• 
(21)  log(2a;2±an/  +  */2)+7^tf 

_!»±2y 
xy/1 

=o. 

4 
CHAPTER  III. 

Art.  28. 

(2)  y  =  A  cos  2x  +  B  sin  2x. 

(4)  y  =  e2x(  J.  cos  a;  +  B  sin  a;) 

(6)  s  =  A  +  Be-4t. 

(8)  ?/  =  2e-a!-e-2a!. 

(1)  y^^e-^  +  ̂e"3*. 

(3)  y  =  Ae~3x  +  Be-*x. 

(5)  s  =  e-2t(^cos3«  +  5sin30. 

(7)  y  =  Aex  +  Be-x  +  Ce~2x. 

(9)  ?/ =  4  cos  (2a; -a) +  5 cos  (3a; -/3). 
(10)  y  =  A  cosh  (2a?  -  a)  +  £  cosh  (3x  -  /3),  or  - 

y  -  Ee2x  +  Fe~2x  +  Ge*x  +  He~3x. 

(11)  y  =  Aer**  +  Be*  cob  {xy/3- a). 

(12)  y  =  Ae2*  +  Be"2*  +  Ee~x  cos  (aj-y/3  -  a)  +  Fex  cos  (x V3  -  /3) 

(13)  6  =  a  cos  *vW-  (14)  ̂ 2  <  4mc- 

(16)  Q-Qf-nWcoBt^^- 

R2\ 

iL2)' 

Art.  29. 

(1)  y  =  ex(l+Acosx  +  Bsinx).         (2)  ?/  =  3  +  4ea;  + Be12*. 
(3)  y  =  2  sin  3a;  +  A  cos  2a;  +  B  sin  2a;.  (4)  a  =  2;  6  =  1. 

(5)a-6;ft--l.  (6)  a  =  /£;  p  =  2.      (7)  a  =  l .;  6  =  2;  y-1. 

(8)  a  =  2.  (9)  4e3*.  (10)  3e7*. 

(11)   -f  sin  5a;.  (12)  £  cos  5a;  - £  sin  5x.  (13)2. 

Art.  34. 

(1)  y  =  A  +  Bx  +  (E+Fx)er*. 

(2)  ?/  =  (A  +  Bx  +  Cx2)  cos  x  +  (E  +  Fx  +  Gx2)  sin  a;. 

(3)  «/  =  (.4  +  Z?a;)  e* +  2?  cos  a; +  .F  sin  a;. 

(4)  y  =  A  +  Bx  +  Cex  +  {E  +  Fx)e-^.. 

Art.  35. 

(1)  y  =  2eZx  +  e~3x(A  cos  4a;  +  Bsin  4a;). 

(2)  y  =  e--P*(4  cos  qx  +  B  sin  </x)  +  eax/{(a  +  p)2  +  q2}. 

(3)  y  =  (A+9x)e3x  +  Be-3x. 

(4)  «/  =  4+(B  +  |j)ea:  +  (C  +  |a;)e-a:. 
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(5)  y  -  [A  +  ax/2p)  cosh  px  +  B  sinh  px. 

(6)  y  =  A+(B  +  Cx-2x2)e-2x. 

Art.  36. 

(1)  y  =  2sin  2a;-4cos2x  +  ile-a!. 
(2)  */  =  4  cos  4a;  -  2  sin  ix  +  Ae2x  +  Be3x. 

(3)  y  =  2co&x  +  e-*x{Aco&Zx  +  BsmZx). 

(4)  !/  =  sin  20a;  +  e-a!(^  cos  20a;  +  5  sin  20a;). 

Art.  37. 

(1)  y  =  x3-3x2  +  6x-6  +  Ae~x.  (2)  y  =  6x2-6x  +  A  + Be~2r. 
(3)  y^Gx  +  e  +  ̂   +  ̂ e3^ 

(4)  </  =  a;3  +  3a;2  +  ̂a;  +  i?,  +  (^  +  JBa;)e3a;. 

(5)  y  =  24x*  +  Ux-5  +  Ae-x  +  Be2x. 

(6)  #  =  8a;3  +  7a;2  -  5ic  +  .4er*  +  Be2x  +  C. 

Art.  38. 

(1)  2/  =  ̂ 4  cosa;  +  (l?  +  2a;)sina;.  (2)  y  =  Aex  +  (x  +  2)e*x. 

(3)  y  =  ̂ 4e2a:  +  ( B  +  Gx  -  20a;2  -  20a;3  -  15a;4  -  9a^)  e"*. 

(4)  y  =  {Asinx  +  (B-x)  cosx}e~x. 

(5)  y  =  (^  +  Bx  -  x3)  cos  x  +  (E  +  Fx  +  3x2)  sin  x. 

(6)  s/  =  ̂  +  (£  +  3a;)ea!  +  Ce-K  +  a;2  +  £cosa;  +  (jF  +  2a;)sina;. 
(7)  y ={A  sin  4a;  +  (B-  x  +  x2)  cos  4a;} e3*. 

Art.  39. 

(1)  ?/  =  ̂a;  +  J5x2  +  2x3. 

(2)  y  =  2  +  ̂ lar4  cos  (3  log  x)  +  Bx~*  sin  (3  log  x). 

(3)  y  =  8  cos  (log  a;)  -  sin  (log  as)  +  via;"2  +  Sx  cos  (^/3  log  a;  -  a). 

(4)  i/  =  4  +  log  x  +  Ax  +  Bx  log  x  +  Cx  (log  x)2  +  D'x  (log  a;)3. 
(5)  y  =  (l  +  2a;)2  [{log  (1  +2x)}2  +  ̂  log  (1  +2a;)  +  B]. 

(6)  y  =  A  cos  {log  (1  +  a;)-ct}  +  2  log  (1+a;)  sin  log  (1+x). 

Art.  40. 

(1)  y^A  cos  (x-a) ;    z—-Asin(x-a). 

(2)  y  =  Ae^  +  Be3x;   z  =  6Ae5x -7Be3x. 

(3)  y  =  Aex-?B  cos  (2x  -a);   z  =  2Aex-B  cos  (2x  -  a). 

(4)  ?/  =  ea;  +  ̂  +  JBe-2a;;    2  =  ex  +  A  -  Be~2x. 

(5)  y  =  A  cos  (x-a)  +  45  cos  (2a;  -  ft)  +  cos  7a; ; 

z  =  A  cos  (x  -  a)  +  B  cos  (2a;  -  (3)  -  2  cos  7a;. 

(6)  y  =  -  S^e3*  -  4JBe4*  +  2e-*  +  cos  2a;  -  sin  2a; ; 
z  =  Ae3x  +  Be*x  +  3e~x  +  4  cos  2a;  +  5  sin  2a;. 
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Miscellaneous  Examples  on  Chapter  III. 

y=>{A  +  Bx  +  Cx2)ex  +  2e?x.  (2)  y  =  {A  + Bx  +  6x*)e-**fi. 

y  =  Ae~Zx  +  Be~2x  +  Cerx  +Ex  +  2e-2*(sin  x  -  2  cos  a;). 

y  4Aex  +  B  cos  (2x  -  a)  -  2eie(4  sin  2x  +  cos  2a?). 

y  =  (A  +  Bx  +  Gxi)e-x  +  (E  +  x  +  2x2)e3x. 
y= A  &in(x -a)  +  B  sinh  (3x  —  yS)  —  2  sinh  2x. 

y  =  (A  +  Bx  +  5x2)  cosh  x  +  (E  +  Fx)  sinh  x. 

y  m  3  +  4x  +  2X2  +  (A  +  Bx  +  4x2)  e2x  -  cos  2x. 

?/  =  ( J.  +  Bx  +  3  sin  2a;  -  4x  cos  2a;  -  2a;2  sin  2a;)  e2x. 

y  =  A  cos  (x  -  a)  +  f  -  ̂-  cos  2a;  -  J x  cos  a;  +  TV  sin  3a;. 

y  =  A  cos  (a;  -  a)  +  B  cos  (3a;  -  f3)  -  3aTcos  x  +  x  cos  3a;. 

y  =  (A0  +  A  xx  +  A  $?  + . . .  +  Aa^x*'1)  eax  +  ax/(\og  a  -  a)a. 
y  =  A  +  B\ogx  +  2(\ogx)3.         (14)  y  =  A  +  Bx^  +  jx2. 

y  =  Ax~3  +  B  cos  (\/2  log  x  -  a). 

y  =  A  +  B  log  (x  + 1)  +  {log  (x  + 1)}2  +  x2  +  8x. 
x  =  A£l  +  Be~zt  +  E  cos  t  +  F  sin  t  -  el ; 

y  =  Aest  +  25e~3t  +  (32?  -  42?)  cos  « +  (3F  +  42?)  sin  « -  e(. 

x  =  ̂ 4e2<  +  Be~l  cos  ( V3J  -  a) ; 

y  =  Ae21  +  Be~l  cos  ( ̂/3t  -  a  +  2tt/3)  ; 
e  =  Ae21  +  Be-1  cos  ( V&  -  a  +  4tt/3). 

x  =  ̂   +  2?H;  y  =  Bt-x-At. 

x  =  At  cos  (log  £  -  a)  +  2ft-1  cos  (log  t-fi); 
,y  =  At  sin  (log  £  -  a)  -  2ft-1  sin  (log  £  -  /S). 
(i)  (x-l)e2a;;  (ii)  £(x2-2a;  +  l)  sin  x  +  \{x2  -  1)  cos  x. 

y  =  e2x  +  Aex. 

y  =  (sin  ax)/(p2  -a2)+A  cos  px  +  B  sin  yx. 

?/  =  .4eaa:  +  J8e6a:  +  e6x  xe-6x(log  x  -  1)  dx. 

(iii)  ?/  =  J.  cos  (x  -  a)  -  x  cos  x  +  sin  x  log  sin  a;. 

(i)  k/(2phe)  ;  (ii)  zero. 

2/  =  E  cos  nx-vF  sin  «x  +  (?  cosh  wx  +  H  sinh  wx. 

CHAPTER  IV. 

Art.  42. 
a*     82: 

(1)  dy  =  adx' 
d2z     d2z 

(2)  sr-s  +  =-s  =  0.     (Laplace's  equation  in  two  dimensions.) 
ox2    ay2 

.,,  a2*   a2*    1  a2z  ...     a?     a? 

(3)ax2+av2=o2a^  W»s+ap*-°" 
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(5)  b^-  +  a=-  =  2abz.  „  . ox       dy  \ 

^  Xdx+ydv  =  nZ'    (Euler's  theorem  on  Homogeneous  Functions.) 

Art.  43. 

(1) 
3*z 

dx2 

dz 

-w        <2> 
d2z     d2z    d2z 

dx2  +  df  +  W 

=  0. 

(3) 
dz     dz dx    dy 

-1 

(4) 
z  = 

■dz        dz    (dz\< 
Vdx  +  ydy  +  \dx) 

<&■
 

(9) 
4:Z  = (dz\2     /dz\2 

\dx)  +  \dy)' 
(6) 

dz  dz 
dx  dy 

Art.  45. 

(1)  y  =  Ae-P(*+t).       (2)  z  =  A  sin  px  sin  pay.       (3)  z  =  A  cos  p(ax-y). 
(4)  V  =  Ae-Px+w  sin  Zy/{p2  +  q2),  where  p  and  q  are  positive. 
(5)  V  =  C  cos  (pqx  +  p2y  +  q2z). 

(6)  V  =  Ae~rt  sin  (mw/Q  sin  (mry/l),  where  m  and  n  are  any  integers and  rl2  =  7r2(m2  +  w2). 

Art.  48. 

(1)  — (sm  x  +  ̂ sin  3a;  +  isin  5x  +  ...). 7T 

(2)  2(sin  a- a  sin  2x  +  ̂ sin  3x~  ...). 

2|"/7r3    6tt\    .  /tt3    6tt\   .    0       /tt3    6tt\   .    n       1 

41"    2  4  6  1 
(4)  - \jpZi  sln  2a;  +  pTTi  sin 4x  +  gaTi  sin  6»  + . . . J. 

2 

(5)  -  [|(1  +  e*)  sin  »  +  f  (1  -e')  sin  2^4-^(1  +e")  sin  3z 
x  H-^l-e*)  sin  ix  +  ...]. 

/*»    32^>  *      .     Mr/.    .    Mr  Mr\    . 

(6)  —  2i  ̂3 sm  2"  I4  Sln  T  "  W7r  cos  T/ sln  nx" 
(7)  (a)  (2),  (3),  and  (6)  ;  (6)  (6). 

Miscellaneous  Examples  on  Chapter  IV. 

...   d2V      1  dV  d2V     a2d  f  2dV\ 

(7)  V  =  V0e"Jx  sin  (nt  -gx),  where  g  =  +  ̂ (n/2K). 

(12)  F  =  -  (e-A'(  sin  B  +  ̂ ye-5'*'  sin  3a;  +  yi^e-25A7  +  ...). 
7T 

(13)  Replace  x  by  ttz/Z,  t  by  tt2///2,  and  the  factor  8/tt  by  8P/tt3. 
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(14)  V  =  Z~  -  (e~iKt  cos  2x  +  \e-™Kt  cos  ix  +  ler***1  cos  6x  +  ...). b 

(15)  V  =  —  (e~Kt  sin  x  +  $e-°Kt  sin  3x+  le-™Kt 8in  5x  + ...). 

[Notice  that  although  7  =  100  for  all  values  of  x  between  0 
and  ir,  V  =  0  for  x  =  0  or  7r,  a  discontinuity.] 

(16)  Write  100-  V  instead  of  V  in  the  solution  of  (15). 
4F« 

(18)  F  =  — & {e-*W cos{ttx/21)  +  ̂ r9W/«! cos  (3?re/2Z)  +  ...}. 7T 

(19)  ?/  =  —  (sin  x  cos  ttf  -  A  sin  3a;  cos  3?tf  +  ̂   sin  5x  cos  5vt  -  ...). 7T 

(22)  gj^  =  0;  y=f(x-at)  +  F(x  +  at). 

CHAPTER  V. 

Art.  52. 

(1)  (y-2a?-c)(y  +  3a:-c)=0.  (2)  (2?/-:r2-c)(2,>/  +  3:r2-c)=0. 

(3)  49(t/-c)2  =  4x7.  (4)  (2?/-cc2-c)(2x-2/2-c)=0. 

(5)  (2y  -  x2  -  c)  (y  -  cex)  (y  +  x-1  -  ce~x)  =  0. 

(6)  (y-ex-c){y  +  erx-c)=Q. 

Art.  54. 

(The  complete  primitives  only  are  given  here.     It  will  be  seen  later 
that  in  some  cases  singular  solutions  exist.) 

(1)  z  =  4^  +  4^3;  y  —  2p2  +  3p4  +  c. 

(2)  x  =  ±(p  +  p~1);  y  =  }p2-%\ogp  +  c. 
(3)  (p-l)2x  =  c-p  +  logp  ;  (p-l)2y  =  p2(c-2  +  \ogp)+p. 

(4)  x  =  ±p2  +  3^  +  3  log  (p-l)+c  ;  y  =  jP  +  %p2  +  3p  +  3  log  (p-\)  +  c. 

(5)  x  =  2  tan_1p  -  p~x  +  c  ;  y  =  log  (p3  +  p). 

(6)  a5=p  +  ce-^;  y  =  %p2  +  c  (p  +  l)  e~i>. 

$    (7)#  =  2p  +  cp{p2-iyh;  y=:p2-l+c(p2-l)~h. 
■'   (8)  z=smp  +  c;  y—p  sin  j)  + cos  p. 

(9)  aj  =  tan^»  +  c;  y  =  pta,np  +  \ogcos  p. 

(10)  cc  =  log  (p  +  l)  -log  (p-l)+log^  +  c  ;  y  =  p-\og  (p2  -  1). 

(11)  x  =  p/(l+P2)+tan-V,  2/  =  c-l/(l+?;2).        (12)  c  =  l. 

CHAPTER  VI. 

Art.  58. 

(1)  C.P.  (y  +  c)2  =  xz  ;  x  =  0  is  a  cusp-locus. 

(2)  C.P.  {y  +  c)2  =  x-2  ;  S.S.  a:  =  2. 
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(3)  C.P.  tf+cy  +  c2^;  S.S.  y2  =  4=x*. 

(4)  C.P.  c*(y +  cosx) -2c  sin  x  +  y -cos  x  =  0;  S.S.  ?/2  =  l. 

(5)  C.P.  (2x*  +  3xy  +  c)2-4(x*  +  y)*  =  0;  x2  +  y  =  0  is  a  cusp-locus. 

(6)  C.P.  c2  -  12cxy  +  8cf  -  \2x2y2  + 1  Qx3  -  0  ;   y2  -  x  =  0  is  a  cusp-locus. 

(7)  C.P.  c2  +  6cx«/  -  2c?/3  -  a?(3?/2  -  a;)2  =  0  ;   «/2  +  x  =  0  is  a  cusp-locus. 

Art.  65. 

(1)  C.P.  (y  +  c)2  =  x(x-l){x-2);  S.S.  x(x-l)(x-2)=0 ;  z  =  l-l/y3 
is  a  tac-locus  and  x  =  l  +  l/\/3  a  tac-locus  of  imaginary  points 
of  contact. 

(2)  C.P.  (y  +  c)2  =  x(x-l)2;    S.S.  z  =  0;    a;  =  1/3  is  a  tac-locus;   x  =  l 
is  a  node-locus. 

(3)  C.P.  y2-2cx  +  c2  =  0;  S.S.  ?/2  =  a:2. 

(4)  C.P.  x2  +  c(x-3y)+c2  =  0;  S.S.  (3y  +  a)(y  -x)=0. 

(5)  C.P.  y-cxa-c2  =  0;   S.S.  z4  +  4?/  =  0;  a;  =  0  is  a  tac-locus. 

(6)  C.P.  y  =  c(x-c)2  ;    ?/  =  0  is  a  S.S.  and  also  a  particular  integral; 
27*/-4a;3  =  0isaS.S. 

(7)  Diff .  Eq.      p2y2  cos2a  -  2pxy  sin2a  +  y2-x2  sin2a  =  0  ; 

S.S.  y2  cos2a  =  x2  sin2a  ;  y  =  0  is  a  tac-locus. 

(8)  Diff.  Eq.  (a;2-l)j92-2a^-a;2  =  0;    S.S.  x2  +  */2  =  l; 
x  =  0  is  a  tac-locus. 

(9)  Diff.  Eq.  (2x2  +  l)p2  +  (x2  +  2xy  +  y2  +  2)p  +  2y2  +  l=0; 

S.S.  x2  +  6xy  +  y2  =  4  ;  #  =  ?/  is  a  tac-locus. 

(10)  Diff.  Eq.  p2{l-x2)-(\-y2)=0;   S.S.  x=  ±1  and  y=  ±1. 

oMj      fab: 

Art.  67. 

S.S.  z2  +  4?/  =  0. 

(2n^       W^3;  S.S.  27/  + 4a:3  =  0. 

(3)  C.P.  y  —  cx  +  cos  c  ;  S.S.  (y  -  x  sin_1a;)2  =  1  -  x2. 
(4)  C.P.  y  =  cx  +  ̂ /(a2c2  +  b2)  ;  S.S.  x2\a2  +  xj2\h2  =  \. 

(5)  C.P.  y  =  cx-ec ;  S.S.  ?/  =  a;(log  a;-l). 

(6)  C.P.  ?/  =  ca:-sin-1c;  S.S.  y  =  V(x2-1)  -sin-V(l  ~V^)- 

(7)  \{y  —  px)2  —  —pk2  ;     2xy  =  k2,   a  rectangular    hyperbola   with. 
axes  as  asymptotes. 

(8)  (x  -  y)2  -2k(x  +  y)+  k2  —  0,  a  parabola  touching  the  axes. 

(9)  The  four-cusped  hypocycloid  a;3  +  y*  —k*. 

Miscellaneous  Examples  on  Chapter  VI. 

(1)  No  S.S.  ;  a;  =  0  is  a  tac-locus. 

(5)  2y=±3x  represent  envelopes,  y  —  0  is  both  an  envelope  and  a 
cusp-locus. 
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(6)  C.V.xy  =  yc  +  c*. 

(7)  C.P.  x  =  yc  +  xyc>;  S.8.  y=0,  y  +  4x*=0.    (Putt/  =  1/F;  3  =  1/*.) 
(8)  (i)  Putting  p  +  x  =  W  we  get 

2x  =  3  (*3  -  I2)  ;     40y  =  9  (5«6  +  2«5  -  5f4)  +  c. 

(ii)  C.P.  «/2  + 4^  =  1 +2cx;  S.S.  a£-4y*  +  4=0;  ?/  =  0  is  a  tac-locus. 

(11)  C.P.  r  =  a{l  +cos  (6 -a)},  a  family  of  equal  cardioids  inscribed  in 
the  circle  r  =  2a,  which  is  the  S.S.     The  point  r  =  0  is  a  cusp- 
locus. 

CHAPTER  VII. 

Art.  70. 

(1)  y=logsec  x  +  ax  +  b.  (2)  x  =  a  +  y  +  b\og  (y-b). 

(3)  ay  =  cos  (ax  +  b).  (4)  x  =  log  {sec  (ay  +  b)  +  tan  (ay  +  b)}  +  c. 

(5)  y  =  x3  +  axlog  x  +  bx  +  c. 

(6)  y=  -ex  +  ae2x  +  bxn-2  +  cxn~z+ ...  +hx  +  k. 

(7)  The   circle    (x  -  a)2  +  (y  -  b)2  =  k2.     The   differential    equation   ex- 
presses that  the  radius  of  curvature  is  always  equal  to  k. 

(9)  \/(l  +  2/i2) =  ky.} ;  the  catenary  y-b  =  k  cosh  {(# - a)/k}. 

Art.  73. 

(1)  y  =  x(a\ogx  +  b).  (2)  i/  =  axcos  (2  log  x)  +&csin  (2  log  a). 

(3)  y  =  x(a\ogx  +  b)2.  (4)  y  =  x2(a  log  x  +  b)2. 

Art.  74. 

(1)  y=±cothX-~^.  (2)  y-  -log(l-x).  (3)  y  =  sm-1x. 

(5)  (i)  The  conic  m  =  yu//t2  +  (1/c  -  /x//t2)  cos  B  \ 

(ii)  cm  =  cos  0\;(l  -  nlh2)  or  cosh  6^(m/h2-l),  according  as  /u>/*8. 

Art.  75. 

(1)  y  =  a(x2  +  l)+be~x.  (2)  y  =  a(x-l)+kr*. 

(3)  y  =  a(x-l)+be~x  +  x2.  (4)  y  =  l  +e~^.  (5)  y-e8". 

Art.  77. 

(2)  y  =  xz  +  ax-l\x.  (3)  y  =  (<c2  +  ace) e*  +  to. 

(4)  y  =  e2x  +  (ax*  +  b)ex.  (5)  y  =  ax3  +  tar3. 

(6)  «/  =  ax2  +  b  sin  as. 
Art.  80. 

(1)  y  =  (a  -  x)  cos  x  +  (6  +  log  sin  x)  sin  x. 

(2)  y=  ja-log  tan  (  j  +ajj  J-  cos  2x  +  &sin  2x. 
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(3)  y  =  {a-er*  +  \og{l+er")}ex  +  {b-log{l+ex)}erx. 

(4)  y  =  ax  +  bx~1  +  (l-x-1)ex.  (5)  y  =  aex  +  (b-x)e?x  +  ce?x. 

Miscellaneous  Examples  on  Chapter  VII. 

(1)  y  =  aee'h-b.  (2)  y  =  a  +  \og{x2  +  b). 
o^n+i  xn  xn— * 

(3)  v  =  ;   rTT  +  2a— ,  +  a2-.   — ,  +  bxn~2  +  cxn~z  + . . .  +  hx  +  k. 
v      *     (n  +  l)\         n\        {n-\)\ 

(4)  y  =  -  32~n  cos  {3x  -  \tt  ( n  -  2)}  +  a  cos  a;  +  6  sin  x  +  ex"-3  + . . .  +  foe  +  k. 

(5)  t/  =  ax  +  b  log  x.  (6)  y  =  aex  +  b(x2-l)e*x. 

(7)  w  =  a  cos  nx  +  b  sin  nx  +  ~  sin  was  — ^  cos  wx  log  sec  nx. v  '  *  n  n2 

(8)  ?/(2a;  +  3)  =  aloga;  +  6  +  ea:. 

(9)  (i)  y  =  \/(ax  +  b)  ;  (ii)  t/  =  ̂ /(alog  x  +  b). 

(10)  ?/  =  (a  cos  x  +  b  sin  x  +  sin  2x)  ex2. 
(12)  ?/  =  x22.  (14)  Z=-£. 

(17)  (i)  y  =  ae*2  +  fo-**2  -  sin  x2.     (Put  2  =  x2.) 
(ii)  ?/(l+x2)=a(l-x2)  +  &x.     (Putx  =  tanz.) 

(18)  j^-2y  =  2{l-z2)  ;  ?/  =  sin2x  +  4  cos  (V2  sin  x  +  a). 

(19)  y  =  acos{2(l+B)e-*}  +  6sin{2(l+x)e^x}  +  (i+*)e~" 

CHAPTEK  VIII. 

Art.  83. 

(1)  y  =  2  +  x  +  x2  -  ̂ x4  -  fvx5  ;  exact  solution  y  =  2  +  x  +  x2. 

(2)  £/  =  2x  -  2  log  x  -  ̂   (log  x)3 ;  exact  value  y  =  x  H4  - . 

(3)  ?/  =  2+x2  +  x3  +  t3tfx5  +  tV:k6; 

2  =  3x2  +  f  x4  +  f  x5  +  ̂ x7  +  /^x8. 

,    (4)  y  =  5  +  x  +  -^x4  +  -^x6  +  ̂ 3x7  +  TVx9  ; 
2  =  1  +  ■?,  X3  +  x5  +  I X6  +  ̂ X8  +  5VTX9  +  2  *  i  x11. 

(5)  2/  has  the  same  value  as  in  Ex.  4. 

Art.  87. 

(1)  2-19.  (2)  2-192.  (3)  (a)  4-12  ;  (6)  4-118. 

(4)  Errors  0-0018  ;  0-00017  ;  0-000013  ; 

Upper  limits  0-0172  ;  0-00286  ;  0-000420. 

Art.  89. 

1-1678487;  1-16780250;  1-1678449. 
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CHAPTER  IX. 

Art.  95. 

(1)  „w|i-*+_-...|»cobV3;  v  =  a;i|l-|j+^-...|=8inV*. 

„L      8         8.11    „     8.11.14    ,        I 

(4)  ̂ XH1"4TOx2  +  4.8(l+l)(2  +  n)^   1    6     \ 

4.8.12(l+w)(2  +  n)(3  +  w)a;  +"'J' To  get  v  from  u  change  n  into  -n.     If  u  is  multiplied  by 

the  constant  r-^,   — ,  the  product  is  called  Bessel's  function Ani  (n  + 1) 

of  order  n  and  is  denoted  by  Jn(x). 

Art.  96. 

(1)  and  (4),  all  values  of  x.  (2)  and  (3),  |x|<  1. 

Art.  97. 

f\  2.    2.5,    2.5.10   .        1 

v  =  u  log  a;  +  {  -  2x  -  x2  -  ̂4-x3. . .}. 

(2)  u  =  |l  - -2x2  +  ̂ -p^4  _  22 .  42  .  62a;6  +  ""  J  ' 

t>  =  Mlogg+|^g2-^-^i(l+^)g*  +  22^^62(l+|  +  ̂ )gB-...j. 

m  is  called  Bessel's  function  of  order  zero  and  is  denoted  by 
J0{x). 

(3)  u={l-2x  +  ̂x*-^x*  +  ...y, 

v  =  u\ogx+^2(2-i)x-~(2  +  l-l)x^  +  ̂(2  +  h  +  l-l)x3-...y 
if.      1.3  .     1.3.5.7    .     1.3.5.7.9.11    fi         1 

(4)  MBa?»|l+  — a*+     ̂    gg    s*+      ̂    82—2l      x6  +  ...|; 
M      *} 

v  =  w  log  x  +  2ar  1    t2  (1  +  i  - 1) x2 

P.D.E.  p  2 
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Art.  98. 
i 

.r8 

23  .  42  .  6  . 8 
(1)  u-x  2{-22.4*4  +  237T76a;6~23.42.6. 

ro*10-]; 
v  =  u\ogx  +  x-^l+^x2  +  ¥-^-^-^^2x9 

31  8     | 

+  22A2.62.82X  "')' 
(2)  u  =  x  +  2x2  +  3x*  +  ...=x(l-x)-2; 

v  =  u  log  x  + 1  +  x  +  x2  + . . .  =  u  log  x  +  (1  -  a;)-1. 

(3)  w  =  {1.2a;2  +  2.3x3  +  3.4x4  +  ...}; 
v  =  ulogx  +  {-l+x  +  3x2  +  5xs  +  lxi +  ...}. 

(4)  M  =  {2a5  +  2a;2-a;3-a^  +  |«5...}; 
v  =  u  log  x  +  {1  -  x  -  5x2  -  x3  +  V"*4. . .}. 

Art.  99. 

(1)2/  =  a0{l  -  z2  -  ix4  -  is". . .}  +  ajx  =  a0  |l  -  |a  log  ̂  J  +  axx. 

(2)  y^ji-^^^-^;;1)^^-..,}      . 
f       (n-l)(n.  +  2)        (n-l)(n-3)(n  +  2)(n  +  4)   .        \ 

+  ail   3!  *+_  ~5T~  "7* 
[For  solutions  in  powers  of  1/x  see  No.  7  of  the  Miscellaneous 

Examples  at  the  end  of  Chapter  IX.] 

(3)  y^{l-0^  +  017^a?8-3.4.7.8.11.128l,  +  "j 

+  a^-0^5  +  4T5V9x9-4.5.8.9.12.13xl3  +  --}< 
(4)  y  =  a0{l  - ^a2  - T\x3  +  &x*...}  +  ax{x - \x*  - ^x*  +  &*. . .}. 

Art.  100. 

(1)  z^  +  z^+{\-n2z2)y  =  0.  (2)  y  =  ax2(l+2x). 

(3)  y  =  x2  (1  +  2b)  {a  +  6  j  or2  (1  +  2x)~2 e*  dx}. 

(5)  2e-and[2e-log2+22{l-|](l+i)2  +  |I(l+^  +  ̂2-...}], 
where  z  =  \jx. 
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Miscellaneous  Examples  on  Chapter  IX. 

(1)  u  =  x~l |l  +  -x  +  ̂ x2  +  ~x3  +  ...J; 
(13         9    _     27    .        ) 

V=       \l!+4!a;  +  7!^  +  lT!K+-}; 
i/l      3        9    _     27    .        I 

-^\2l+6lX+8!^  +  lT!^+-T 

(2)  M,|l+J-a;+-l^a;2  +  i2   ̂   32a*+„.};        ' 

t,  =  *dogz  +  2|-pS-pr-^(l+-)a;2 

12.22.32\      2    3/         '"/' 
w  =  u  (log  a;)2  +  2  (v  -  u  log  a;)  log  x 

CHAPTER  XI. 

Art.  113. 

(1)  x/a  =  y/b  =  z',  straight  lines  through  the  origin. 

(2)  lx  +  my  +  nz  =  a ;  x2  +  y2  +  z2  =  b;  circles. 

(3)  y  =  az;  x2  +  y2  +  z2  =  bz;  circles. 

(4)  x2  - y2  —  a  ;    x2-2;2  =  6;    the  intersections  of  two  families  of  rect- 
angular hyperbolic  cylinders. 

(5)  x-y  =  a  (z-x) ;  (x-y)2(x  +  y  +  z)  =  b. 

(6)  x2  +  y2  +  z2  =  a  ;    y2  -  2yz  -z2  =  b;    the  intersections  of  a  family  of 
spheres  with  a  family  of  rectangular  hyperbolic  cylinders. 

(7)  y/(m*  +  n2) .  (8)  The  hyperboloid  y2  +  z2  -  2x2  =  1 . 

(9)  (x2  +  y2)  {k  tsm-hj/x)2  =  z2r2.  (10)  l/x  =  l/y  + 1/2  =  \(z  +  2. 

Art.  114. 

(1)  y-3x  =  a;  5z  +  t&n(y-3x)=be^x. 

(2)  y  +  x  =  a;  log  {z2  +  (y  +  x)2}  -  2x  =  b. 

(3)  xy  =  a;  (z2  +  xij)2-xi  =  b.        (4)  y  =  ax\  \og(z-2x/y)-x  =  b. 

Art.  116. 

(1)  x2  +  y2  +  z2  =  c2  ;  spheres  with  the  origin  as  centre. 

(2)  x2  +  y2  +  z2  =  ex  ;  spheres  with  centres  on  the  axis  of  x. 

(3)  xyz  —  <?. 
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(4)  yz+zx  +  xy  =  c?  ;  similar  conicoids  with  the  origin  as  centre. 

(5)  x-cy=y log z. 

(6)  x2  +  2yz  +  2z2  =  c2  ;  similar  conicoids  with  the  origin  as  centre. 

Art.  117. 

(1)  y  —  cx  log  z.  (2)  x2y  =  cz&.  (3)  (x  +  y  +  z2)ex2  =  c. 
(4)  y{x  +  z)  =  c(y  +  z).  (5)  {y  +  z)/x  +  (x  +  z)ly  =  c. 

(6)  w/-mz  =  c(wa?-fe).     The  common  line  is  x\l  =  y\m=z\,n,. 

Art.  120. 

(3)  z  =  ce2*.  (4)  z2z  +  4=0. 

Miscellaneous  Examples  on  Chapter  XI. 

(1)  y  =  ax;  z2-xy  =  b.  (2)  x^y%z  —  a\  xz  +  yz  =  bx2y2. 
(3)  y  +  z  =  aex;  y2-z2  =  b.  (4)  ?/  =  sina;  +  cz/(l  +  z2). 

(5)  x2  +  a:?/2  +  x2z  =  £  +  c.  (6)  f(y)  =  ky;  xk  =  cyz. 

(8)  <fo/a;  =  %/2?/  =  dz/3z.  (9)  y  +  z  =  3e*-3  ;  y2  -  z2  =  3. 
(10)  (i)  x2  +  y2  +  z2  =  c(x  +  y  +  z) ;  (ii)  x2  -  xy  +  y2  =  cz  ; 

(iii)  y2-yz-xz  =  cz2. 
(14)  xt/  =  cez  sin  w. 

CHAPTEE  XII. 

Art.  123. 

(1)  <p(x/z!yfz)=0.  (2)  (j>(lx  +  m,y  +  nz,x2  +  y2  +  z2)=0. 

(3)  0{*//z,  (x2  +  y2  +  z2)jz}  =  0.  (4)0  (x2  -  y2,  x2  -  z2)  =  Q. 

(5)  <p{(x -y)2(x  +  y  +  z),(x- y)l(z - x)}  =  0. 
(6)  (p{x2  +  y2+  z2,  y2  -  2yz  -  z2}  =  0. 

(7)  <f>[y-3x,  e~5a:{5z-tan(«/-3a;)}]=0. 
(8)  </>{y  +  x,  log  (z2  +  y2  +  2yx  +  x2)  -  2x)  =  0. 
(9)  y2  =  ixz.  (10)  a(x2-y2)+b(x2-z2)+c  =  0. 

(12)  (j>(x2  +  y2,  z)  =0 ;  surfaces  of  revolution  about  the  axis  of  z. 

Art.  126. 

(1)  (fi{z  +  Xx,X1JfX2,X-i  +  X3)=0. 

(2)  0(z,  xfrf1,  xfxf1,  a;1%r1)=°- 
(3)  (p(z-x1x2,  a^  +  Xa  +  Zg,  x2x3)=0. 

(4)  0(2z  +  a;12,  xx2-x22,  xx2-x32)=0. 

(5)  (p(4\/z ~xz2>  2x3-x22,  2x2-a;12)=0;  special  integral  z  =  0. 
(6)  <p{z-3xv    z-3x2,    z  +  6\/(z-x1-x2-x3)}=0;    special    integral 

Z==X-\~tX2~tX3. 
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Art.  129. 

(1)  z  =  (2b2  +  l)x  +  by  +  c.  (2)  z  =  a;cosa  +  y8in  a  +  c. 

(3)  z  =  ax  +  y\oga  +  c.  (4)  z  =  asx  +  a~2y  +  c. 
(5)  2  =  2x  sec  a  +  2y  tan  a  +  c.  (6)  z  =  a;(l  +  a)  +  ?/(l  +  l/a)  +  c. 

Art.  130. 

(1)  az  =  (a  +  ay  +  bf.  (2)  z=±  cosh  {(a;  +  ay  +  6)^(1  +  «2)}- 

(3)  z2-a2  =  {x  +  ay  +  b)2,  or  2  =  6.        (4)  z2(l+a3)=S{x  +  ay  +  bf. 

(5)  (2  +  a)ea!+a2/  =  6.  (6)  2  =  6eax+aX 

Art.  131. 

(1)  3z  =  2(x  +  a)*  +  3ay  +  3b.  (2)  2az  =  a2x2  +  y2  +  2ab. 

(3)  az  =  ax2  +  a2x  +  eav  +  ab.  (4)  (2z-ay2-2b)2  =  l6ax. 

(5)  2  =  a(ex  +  e2/)  +  6.  (6)  az  =  a2x  +  a  sin  x  +  sin  */  +  a6. 

Art.  133. 

(1)  2  =  -  2  -  log  xy.  (2)  3z  =  xy-x2-  y2.      (3)  823  =  -  27x2y2. 

{±)zx=-y.  (5)2  =  0.  (6)  22  =  1.  (7)2  =  0. 

Art.  136. 

(1)  4«=  -y\ 
(4)  A  particular  case  of  the  general  integral,  representing  the  surface 

generated  by  characteristics  passing  through  the  point  (0,  -1,0). 

Miscellaneous  Examples  on  Chapter  XII. 

(1 )  2  =  ax  +  by  -  a2b  ;  singular  integral  z2  =  x2y. 

(2)  zx  =  ax  +  by-  a2b  ;  singular  integral  z2  =  y. 

(3)  <j>{xy,(*2  +  xy)2-x*}=0. 

(4)  2  =  3z3  -  3ax2  +  a2x  +  2?/4  -  lay3  +  3ahj2  -  a3y  +  b. 

(5)  2  =  axx  +  b  log  x2  +  (a2  +  26)  x3_1  +  c. 

(6)  z^^^  +  x^x^x^-x^}. 

(7)  3a(x  +  at/  +  6)  =  (l +a3)log2,  or  2  =  6.     2=0  is  included  in  z  =  6,  but 
it  is  also  a  singular  integral. 

(8)  z(l+a2  +  b2)  =  (x1  +  ax2  +  bx3  +  c)2. 

(9)  <p(z-e4a;i,  2-e4^,2-e4^)=0.  (10)  z  =  ax-  (2  +  3«  +  hr)y  +  b. 

(11)  22  =  az2-(2  +  3a  +  ia2)2/2  +  6.             (12)  22  =  (1  +  a2)x2  +  aif  +  b. 

(13)  z  =  a  tan (£  +  a?/  + 6),  or  2  =  6.     2  =  0  is  a  singular  integral,  but  it  is 

also  included  in  z  =  6. 

(14)  22  =  ax2  +  by2  -  3a3  +  62.     Singular  integral  z2  =  ± 2x3/9  -  i/fi. 

(15)  z=x  +  y-l±2y/{{x-l){y-l)}.  (1(3)  z2-xy=c. 
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(17)  <j>{z/x,  z/y)=0 ;  cones  with  the  origin  as  vertex. 

(18)  x2  +  y2  +  z2  =  2xc6sa  +  2yB,ma  +  c;    spheres   with  centres  on  the 
given  circle. 

(19)  xyz  =  c.     (This  is  the  singular  integral.     The  complete  integral 
gives  the  tangent  planes.) 

(20)  The    differential    equation    (z  -  px  -  qy)  (1  -  1/p  -  1/q)  =  0   has   no 
singular  integral,  and  the  complete  integral  represents  planes. 

CHAPTER  XIII. 

Art.  139. 

(1)  y2{{x-a)2  +  y2  +  2z}  =  b.  (2)  z2  -  2ax  +  a 2y2  +  b. 

(3)  z  =  ax  +  bey(y  +  a)~a.  (4)  z2  =  2(a2  +  l)x2  +  2ay  +  b. 
(5)  z  =  ax  +  3a2y  +  b.  (6)  (z2  +  a2)z  =  9(x  +  ay  +  b)2. 

(7)  z  =  x3  +  ax  +  %(y  +  afi2  +  b.  (8)  z  =  ax  +  by  +  a2  +  b2. 

Art.  141. 

(l)z  =  a1x1  +  a2x2  +  (1  -  a>\  -  «22) xz  +  az. 

(2)  z  =  a1x1  +  a2x2  ±  sin-1  (c^ag,^)  +  az. 
(3)  z  =  ax  log  xx  +  a2  log  x2  ±  xz-\/{ax  +  a2)  +  az. 

(4)  2z  =  axxx2  +  a2x22  +  azxz2  -  2  {axa2az)llz  log  a:4  +  a4. 

(5)  2{axa2az)x<z  log  z  =  a^2  +  a2x22  +  azxz2  + 1. 

(6)  iaxz  =  4ax2  log  xz  4-  2a1a2(x1  - #2)  -  (xx  +  x2)2  +  ̂axaz. 
(7)  (1  +  «!a2)  log  z  =  (ax  +  a2)  (xx  +  axx2  +  a2xz  +  az). 

(8)  z  =  -(ax  +  a2)xx  +  (2ax-a2)x2  +  (  -ax  +  2a2)xz 

-  ̂{xx2  +  x22  +  x32)  ±  §  {xx  +  x2  +  xz-  2ax2  +  2axa2  -  2a22}3/2  +  a3. 

Art.  142. 

(1)  z  =  =h  (xx  +  x2)2  +  log  xz  +  a.  (2)  No  common  integral. 

(3)  z  =  xx2  +  x22  +  xz2  +  a,  or  z  =  xx2  +  2x2xz  +  a. 
(4)  z  =  a  (xx  +  2x2)  +  b  log  xz  +  2ab  log  x4  +  c. 

(5)  z  =  a(3xx  +  x23-xz3)  +  b.  (6)  No  common  integral. 

(7)  z  =  a(x1-cc4)  +  fe(a;2-a;3)  +  cJ  or  z  =  a(x1-2x2)  +  b(2xz-x4)  +  c. 

(8)  Z  =  0(3.2! +  z23-z33). 

(9)  z  =  (f>{xx-x/x,  x2-x3),  or  z  =  0(£1-2#2,  2x3-x4). 

Miscellaneous  Examples  on  Chapter  XIII. 

(1)  z2  =  ax  log xx- axa2 log  £2  +  a2log£3  +  a3. 
(2)  No  common  integral. 

(3)  z  =  ax  log  X!  +  a2x2  +  (ax  +  a2) xz ±  \/{ai (ai  +  %az) x i3l  +  a3- 
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(4)  0  =  ax  log  xy  +  a&2  +  (a2  +  a2)  x3  ±  y/{ax  (ax  +  2a2)  z3}  + 1 . 
(5)  2logz  =  c±(x*  +  x*  +  x3z).  (6)  z3  =  x*  +  x.*  +  x33  +  c. 

(7)  42  +  aj12  +  x22  +  x32  =  0.  (10)  z  =  <p(Xlx2,  x2  +  x3  +  xA,  xAxb). 
(11)  (iii)  3z  =  x13-3x1x2+c. 

CHAPTER  XIV. 

Art.  144. 

z  =  x*  +  xf(y)  +  F(y).  (2)  z  -  log  x  log  y  +f(x)  +  F(y).  ̂  

z=-^sinxy  +  yf(x)  +  F(x).      (4)  z - xy  +/(y)  log x  +  F(y). 

z  =  sin(x  +  y)  +  -f(x)  +  F(y).       (6)  z= -xy+f(x)  +  e*yF(x). 

z  =  (x2  +  y2)2-l.  '      (8)  z  =  ̂ 2  +  2x?/  +  2</  +  ua;2  +  &;r  +  c. 
2  =  (x2  +  i/2)2.  (10)   2  =  ̂   +  |/(l-^) 

Art.  145. 

«-JP1(y+«)  +  JF,2(y  +  2a;)  +  f8(y  +  3a;). 
«=/(y-2z)  +  JF(2y-a;).  (3)  z=f(y  +  x)  +  F(y-x). 
The  conicoid  4a;2  -  8xy  +  y2  +  8x-4:y  +  z=0. 

Art.  146. 

z  =f(2y  -  3a?)  +  xF(2y  -  3x).  (2)  2  =f{5y  +  ix)  +  xF(5y  +  ix). 
z=f(y  +  2x)+xF(y  +  2x)  +  <j>(y).       (4)  z(2x  +  y)=3x. 

Art.  147. 

z  =  x4  +  2a%  +/(?/  +  a;)  +  «/(y  +  x). 

z  =  2{f-x3)  +f{y  +  2x)  +  F {2y  +  x).  (3)  V  =  - 27ra:2^2. 

Art.  148. 

z  =  ex+2!>+f(y  +  x)+xF(y  +  x). 

z  =  x2(3a;  +  y)  +f(y  +  3x)  +  xF(y  +  3x). 

z  =  -  x2  cos  {2x  +  y)  +f{y  +  2x)  +  xF(y  +  2x)  +  <p  ( y). 
z  =  xex-y+f{y  -x)  +  F(2y  +  3x). 
V  =  (x  +  yf  +f(y  +  ix)  +  F(y  -  ix). 

z  =  2xl  log(cc  +  2y)  +  f(2y  +  x)  +  xF(2y  +  x) 

Art.  149. 

z  =  x  sin  y+f(y-x)  +  xF(y  -x). 

z  =  x*  +  2x*y  +f{y  +  5x)  +  F(y  -  3.x). 
z  =  sin  x  -  y  cos  x  +  f(y  -  3x)  +  F(y  +  2x). 

z  =  sin  xy+f(y  +  2x)  +  F(y  -  x). 
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(5)  z  =  %ta,nxta,ny+f(y  +  x)  +  F(y-x). 
(6)  y  =  x  log  t  + 1  log  x  +f(t  +  2x)  +  F(t-  2x). 

Art.  150. 

(1)  z=f{x)  +  F(y)+e?x<t>(y  +  2x). 
(2)  z  =  er*{f(y  -x)  +  xF(y-  x)}.  (3)  7  -  2Aehlx+M). 

(4)  z=f(y  +  x)  +  e-*F{y-x).  (5)  z  =  ̂Aeh{x+hv)  +  yZB^x+7k>>\ 
(6)  3  =  2^en(a:C03a-H'8in'l».  (7)  z  =  ex{f(y  +  2x)  +  IlAe!civ+ikx)} 

(8)  «  =  l+e-a!{(2/-a;)2-l}. 

Art.  151. 

(1)  z  =  \e2x~v  +  exf(y  +  x)  +  e2xF(y  +  x). 

(2)  z  =  l+x-y-xy  +  exf{y)  +  e-vF(x). 
(3)  z  =  sV(sin  (x  -  3y)  +  9  cos  (x  -  3y) }%  ZAe^+^l 

(4)  z  =  x+f(y)+e-xF(y  +  x).  (5)  2/  =  |xex+2;  +  2^ej:seCa+rtana. 

(6)  z  =  e2x{x2  tan  (t/  +  3z)  +»/(«/  +  3x)  +  F(y  +  3x)}. 

Art.  152. 

(1)  y2r-2ys  +  t=p  +  6y.  (2)  pt-qs=pq3. 
(3)  r  +  3s  +  *  +  (rt-s2)  =  l. 

(4)  pq(r-t)-(p2-  q2) s  +  (py  -  qx) (rt  -  s2)  =  0. 
(5)  2^7,  +  gtf-2^(rt-s2)  =  l.  (6)  qr  +  (zq-p)s-zpt  =  0. 

Art.  154. 

(1)  z  =f{y  +  sin  a:)  +  F(y  -  sin  x).        (2)  z  =/(x  +  ?/)  +  ̂ (xy). 

(3)  y-\p-{x  +  y  +  z)  =  <f>(x),   or   z=f(x)  +  F(x  +  y  +  z). 
(4)  2  =/(£  +  tan  !/)  +  F(x  -  tan  */).      (5)  z  =f(x2  +  y2)  +  F{y/x)  +  xy. 
(6)  y=f{x  +  y  +  z)+xF{x  +  y+z).      (7)  3z  =  4^ - x2xf  - 6  log  y - 3. 

Art.  157. 

(1)  p  +  a;-2t,=/(g>-2a;  +  3y)  ;  A  =  -£. 

(2)  p-x=f(q-y);  A  =  a>.  (3)  p-ex=f(q-2y)  ;  A  =  a>. 
(4)  p-y=f{q  +  x);  p  +  y  =  F(q-x);  \=±1. 
(5)  p-y^f{q~2x)  ;  p-2y  =  F(q-x)  ;  A  =  -1  or  -£. 
(6)  px-y=f{qy-x);  \=-xox  -y. 

(7)  z^  -  z  =/(z£  - 1/) ;  A  =  z/^2  or  z/y2. 

Art.  158. 

(1)  z  =  az  +  by  -  \x2  +  2xy  -  f  y2  +  c  ; 
z  =  |a;2  ( 1  +  3m2)  +  (2  +  3m)  xy  +  nx  +  <j>(y  +  mx) 

=  2xy  -  \  (x2  +  3y2)  +  nx  +  \js(y  +  mx). 
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(2)  «  =  f(a*  +  y*)+oa;  +  &y  +  c;  z^^  +  y^  +  nx  +  y^iy  +  mx). 
(3)  z  =  ex  +  y2  +  ax  +  by  +  c;  z  =  ex  +  y2  +  nx  +  yf,(y  +  mx). 

(4)  &  =  i(a-/3);  2/  =  HV/(^)-0'(«)};  z  =  ™J  +  \{<t>{a)-y},(p)}  +  Py. 
(5)  a:  =  £-a;  y  =  <t>'{a)-\[r'(l3);  z  =  xy-<f>(a)+yj,{P)+Py. 
(6)  z  +  y/m  +  mx-n\ogx  =  <p(xmy)  ;  the  other  method  fails. 

(7)  z2  =  a?  +  y2  +  2aa;  +  2oy  +  c;  z2  =  x2  +  y2  +  2nx  +  \J,(y  +  mx). 
(8)  2z  =  y2-a;2. 

Miscellaneous  Examples  on  Chapter  XIV. 

(1)  z  =  x2y2  +  xf(y)  +  F(y).  (2)  z  =  e*+v+f(x)  +  F(y). 
(3)  yz  ==  y  log  y  -/(a)  +  yF{x). 

(4)  z=/(cc  +  ?/)+a;i,(a;  +  ?/)-sin(2a;  +  3?/). 
(5)  2=/(y  +  loga;)+*JP(y  +  loga;).      (6)  z  =  x  +  y+f{xy)  +  F(x2y). 

(7)  3  =  log(*  +  y)  ./(a;2  - 1/2)  +  *V  -  if). 

(8)  42  =  6a;y  -  3a;2  -  5y2  +  lax  +  46?/  +  c  ; 

4z  =  6a;?/  -  3a;2  -  5y2  +  2nx  +  2\js  (y  +  mx). 

.    (9)  3z  =  3c±2{x  +  a)3l'2±2(y  +  b)3'2. 
(10)  mz  +  sin  y  +  m2  sin  x  - mnx  =  m<f>(y  +  mx). 

(11)  2a;  =  «-/3;  fy  =  ̂'(/3)  -  0'(«)  J 
22  =  3a;2  -  6^  -  7y2  +  </>(«)-  -f (/3)  +  2fty. 

(12)  z  =  x3  +  ?/3  +  (a;  +  ?/  +  l)2.  (13)  z  =  x2-xy  +  f. 

(20)  px  +  qy=f(p2  +  q2);  py -qx=  F(q/p). 

Miscellaneous  Examples  on  the  Whole  Book. 

?(1)  {x2-y2)2  =  cxy.  (2)  ?/  =  a;2  +  ce-r2. 
(3)  2  sec  a;  sec  ?/ =  a;  +  sin  a:  cos  a;  +  c.    (4)  (a;?/  +  c)2  =  4(a;2  +  ?/)(?/2-ca;). 

(5)  1 +a;?/  =  y/(c  +  sin-1x)v/(l -a;2).      (6)  y  =  (^  -  ]x)  cos  2x  +  JBsin  2a;. 
a;2    6a;     28       1 

(7)  !/  =  ̂ -^  +  ]2?  +  ̂ ^a:(sin2a;-cos2a;)  +  Je-a:  +  5ea:cos(2a;  +  u). 

(8)  y  =  A  +  Bx  +  Cx  log  x  +  log  x  +  |a;(log  x)2  +  la;2. 
(9)  y  +  sec  x  =  c  tan  a;. 

(10)  a;  =  Aelt  +  Be"2'  -  f  (cos  « -  sin  <)  ;  y  =  ,4e2(  -  3/fr-2<  -  «  cos  t. 

(11)  a;2/3  =  (y-l)2/3  +  c.  (12)  y  =  acosvc(b-x). 

(13)  y  =  L4  +  Bx  +  X  J  sin  2x  +  ( J0  +  Fx  -      J  cos  2a;. 
(14)  2xy  =  3x2  +  c.  (15)  z  +  xy  =  c(x  +  y -xy). 

(16-)  a;3  +  y3  +  23  =  ca;v/z.  (17)  2  =/(.n/)  -  Jx2  -  -J  y2. 

(18)  (x  -  y) ̂ -^^)  =/{(»  -  3y  +  z)/(x  -  yf). 

(19)  (2  +  a;)2  =  (2  +  2y)/0//x-). 

(20)  z  =  ax  +  by  +  a2  +  b2  ;  singular  integral  iz  +  x2  +  ij-  =  0. 

(21)  z  =  e*f(x-y)  +  F(y). 
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(22)  z  =  aa*2  +  %  +  4a2  ;  singular  integral  1 62  +  cc4=0. 

(23)  z=f(x  +  y)  +  F(x-y)  +  b(x*  +  f). 
(24)  z  =  xf(y)  +  yF(x).  (25)  cz  =  (x  +  a)(y  +  b). 

(26)  z  =  lxy+f(y/x)  +  xF(yfx).  (27)  z=f{z  +  x)  +  F(z  +  y). 

(28)  y(x  +  c)  =  c2x;  singular  solutions  y  =  0  and  «/  +  4a;2  =  0. 

(29)  atf  =  {x  +  bf.  (30)  2/  =  ̂ cos(|^)  +  5sin(^). 

(31)  r5  +  «/2  +  z2  =  2(a;cosa  +  ?/sina  +  c).         (32)  y  =  ex-\ eix  +  \^x. 

(33)  a;  =  e~Kt  (a  cos  X£  4-  b  sin  XZ)  +  C  cos  (pt  -  a), 
where  C  =  .4/ ̂/{(/c 2  +  X2  -  flf  +  ±K2p2},  tana  -  2KpJ(K2  +  X2  - 2>2), 
and  a  and  6  are  arbitrary  constants. 

(34)  y  =  A  cos  (sin  x)  +  B  sin  (sin  x). 

(35)  (i)  i^  =  ̂ log(r  +  2)  +  5; 

(ii)  <f>  -  A  [  e-^4a'2  d£  +  5 ;  |^  =  ~  e^l***. 

(36)  F  =  A{\  +  f  (3z2  -  r2)  +  ̂ V (35z4  -  30z2r2  +  3r% 
where  r2  =  x2  +  y2  +  z2. 

l+-  +  7T-I  +  £7-*+'»     COsh< a    4!  a4    5!  a5        / 
«(£ 

X3  X6  X  \     .    , 

2  +  K7— 3  +  ̂ 7— 6  +  srj— 7  +  --  Jsinn*. 12     31a*1     6 !  ab     7 !  a7         / 

(41)  y-x  =  c(xy -l)e~x. 

(42)  ?/  =  (l+a;)a-6(l-cc)a+V  +  ̂   f  (l+^)_0+6-1(l-^)"a"6-1^}- 
If    2a  is   an  integer,   the  integral   can    be    evaluated    by 

putting  z  =  ( 1  +  x)/(  1  -  x) . 

(43)  (i)  y  =  (l-x2){A  +  B\ogx);  (ii)  y  =  {l  -x2)(x  +  A  + Biogx). 

(44)  (1  -  x2)  y  =  (a  +  b    e-*2  oa;)  e^  x'2-     [Put  log  y  =    (w  - 1 P)  dx.   u  =  x  is 
a  solution  of  the  differential  equation  in  u.] 

<M  fM-l     (2»-2)x2     (2H-2)(2n-4)(2n-6)x4         . 
l«);/w  (2n-l)2!     (2«-l)(2n-2)(2n-3)  4!     *"  • 

(2w-2)(2w-4)a3 
^(a;,~"    (2n-l)(2n-2)3!  +  "" 

(46)  */  =  ,4a-5  +  J5r}  +  #(a;2  +  l),  replacing  C/6  by  £. 

m--^**^©1 
c{c  +  2(6  +  l)}{c  +  4(6  +  3)}  /x\6 

+  6!  '    W  + 
5 

+  .., Va/        3!     Va/  5!  Va/ 

both  converge  within  the  circle  \x\  <  \a\. 
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(50)  q  j  i   ^-  i  must  be  a  function  of  x  alone  ;  x*y  -  ax2y2  =  c. 

(51)  x*  +  y2  +  2bxy  =  2ax. 

(52)  uvew  =  a I vV  dx  +  6,  where  t;  =  Q/P  and  w  =  It;  dx. 

(53)  Pwcot(nx  +  a)+Q  =  n2. 

(54)  y(l-x)=A(3 - 2x)  e2x+B(l-2x)  e~2x. 

(56)  x3  +  yz  =  c(y  +  z). 

(57)  t/  =  ̂e-2a5  +  ea;(5cosa;V3  +  Csina;V3) 

+  tx2  +2riTire_2a;{157x(6  cos  a;  + 11  sin  a;) 
+  3  (783  cos  a;  -56  sin  x)}. 

(58)  ̂   =  (3  +  4a;2){^  +  £f(3  +  4a;2)-2e-^2^}. 

(59)  z*(x  +  y)*{x2  +  y2  +  z2)=c{x2  +  y2-z2).  (60)  xz  =  c(y  +  z). 

(62)  (1)  Put     «=   rr-5~;      (")  y~K=-r   -• 
*        ua2(x)  dx       K  '  v     2     l-ctanz 

[See  Ex.  41  for  method.] 

(65)  If  a  particle  P  moves  so  that  its  velocity  is  proportional  to  the 
radius  vector  OP  and  is  perpendicular  to  OP  and  also  to  a 
fixed  line  OK,  then  it  will  describe  with  constant  speed  a 
circle  of  which  OK  is  the  axis. 

(67)  r2sin  2(0  +  a)  =  l  ;  singular  solution  r*=*=l. 

(68)  y2  -  x2  =  ex  +  2a2  +  a\/(4a2  -  c2)  ;  singular  solution  y2  -  x2  =  ±  2a y. 

(70)  ia(y  -  c)  =  (x  -  c)2  ;  singular  solution  «/  =  x -a. 

(71)  x  +  a  =  c  cos  (j)  +  c  log  taji  |0.  (72)  a  cos  0  +  b  cos  0'  =  k. 
(74)  2c?/  =  (a;  +  c)2  ;  singular  solution  y(y -2x)=0. 

(75)  a;+j9«/  +  ajj2  =  0;    (2/  +  a^)v/(p2  +  l)  =  c  +  a  sinh-1^, 
x V(P2  +  l)+p(c  +  a  sinh-1^)  =  0. 

There  is  no  singular  solution.  The  ̂ -discriminant  y2  =  iax 
represents  the  cusp-locus  of  the  involutes. 

(77)  y  =  ax,z  =  b  +  V(x2  +  y2);  *  =  V(*2  +  //2) +/(.<//•')• 
The  subsidiary  integrals  represent  a  family  of  planes  through 

the  axis  of  z  and  a  family  of  paraboloids  of  revolution  with 
the  axis  of  z  as  axis  ;  the  general  integral  represents  a  family 
of  surfaces  each  of  which  contains  an  infinite  number  of  the 

parabolas  in  which  the  planes  and  paraboloids  intersect. 

(78)  x2  +  y2  +  z2  =f{x2  +  y2  +  (x  +  y)2}  ;  a;2  +  if  +  z2  =  c2  ;  z2  =  xy. 

(79)  (2x-y)'7  =  c5z{x  +  2y). 
(80)  (ax  -  by)j(z  +  c)  =f{(ax  +  by)j(z  -  c)}. 
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(81)  (i)  I=EIR  +  Ae-Rt'L;  (ii)  A  =  I0-E/R;  (iii)  I=EjR. 

(82)  I  =  a  cos  {pt  -  e)  +  Ae -  Rl'L,  where  a  =  E/^R2  +  L2p2),  tan  e  -  Lp/R, 
and  A  is  arbitrary. 

(83)  Q  =  a  sin  (p<  -  e),  where  tan  e  =  (C-Lp2  -  l)jpCR  and 

a  -  EC/V{(CLp*  -  l)2+p2C2R2}. 

(85)  z  =  4  cos  {t-  a)  +  B  cos  (3t  -  ft) ;  y  =  2A  cos  (t-a)-5B  cos(St-ft) 

(86)  a  and  b  are  the  roots  of  \2{LN  -  M2)  +  \{RN  +  LS)  +  RS  =  0. 

(91)  x  =  A  cos  {pt  -a)  +  B  cos  (gtf  -fi),y  =  A  sin  (p*  -  a)  -  B  sin  (<^  -  /3), 

where  2p  =  y^c2  +  k2)  +K,2q  =  V(±<?  +  *2)  -  * • 

(92)  -^  +  (a  +  6)  -=-  +  abz  =  a&c. 

(93)  2?  =  \/(w2  _  V2)  makes  the  amplitude  of  the  particular  integral  a 
maximum,  provided  2/j2  does  not  exceed  n2. 

(94)  x  =  ̂ e~w  cos  {pt  -  e),  where  ̂   =  \/{n2  -  h2). 

(97)  <j>  =  \  Fa3r-2  cos  0.  (98)  y  sin  (pfr/c)  =  J.  sin  (yx/c)  (cos  ̂   +  a). 

(100)  0  =  Ccosh  m{y  +  h)  cos  {mx-nt). 

(115)     (vi)  u.-4(-2)"+B(-l)«>; 

(vm)  ux  =  2X(P cos  —  +Q sm  —  J , 

(x)  Ma!  =  4(-9)*  +  B+^. 
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Duality,  160,  161,  18!),  210. 
Dynamics,  2,  24,  28,  36,  46,  47,  50,  61, 

*85,  86,  190,  204,  205,  206,  207,  208, 200,210,  211. 

Earth,  age  of,  60,  212. 
Einstein,  209. 

Electricity,  24,  29,  4(i,  48,  58,  59,  134, 
203,  204,  205,  206. 

Elimination,  2,  4!),  50,  179. 

Envelope,  60,  71,  146,  155. 
Equivalence,  92. 
Kuler,  xv,  12,  25,  49. 
Exact  equations,  12,  23,  91,  191. 
Existence  theorems,  121.  214. 

Factorisation  of  the  operator,  86. 
Falling  body,  24,  86. 
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Falling  ohain,  208. 
Finite  differences,  215,  216. 
First  order  and  first  degree,  ordinary, 

12,  133  ;  partial,  147,  151. 
First  order  but  higher  degree,  ordinary, 

62,  65  ;  partial,  153,  162,  165. 
Fontaine,  xv. 
Forsyth,  150,  194. 

Foucault's  pendulum,  209. 
Fourier,  54. 

Fourier's  integral,  60. 
Fourier's  series,  54. 
Frobenius,  xvi,  109. 

Frobenius'  method,  109,  127. 
Fuchs,  xvi. 
Functions,  arbitrary,  49,  137,  147,  172. 

Gauss,  110. 
General  integral,  xvi,  137,  147,  149,  157. 
General  solution,  4. 
Geometry,  5,  19,  65,  133,  137,  146,  173, 

188,  189. 
Goursat,  xvi,  172,  194. 
Graphical  methods,  5,  8. 
Groups,  xvi,  120,  194. 

Hamilton's  equations,  210. 
Heat,  52,  53,  57,  58,  59,  60,  212. 
Heaviside,  58,  61. 
Heun,  94. 

Heun's  numerical  method,  104. 
Hill,  M.  J.  M.,  vi,  xv,  xvi,  65,  150,  155, 

192,  194. 
Homogeneous  equations,  xv,  14,  40,  44, 

83,  144,  171,  173,  213. 
Homogeneous  linear  equations,  40,  44, 

171,  173. 
Hydrodynamics,  208. 
Hypergeometric  equation,  119,  120. 
Hypergeometric  series,  92,  119. 

Indicial  equation,  109,  111. 
Initial  conditions,  4,  28,  53. 
Inspection,  integration  by,  12,  172. 
Integrating  factor,  xv,  13,  17,  22,  23,  91, 

199. 

Integrability,  139,  144,  191,  193. 
Integral  equation,  96. 
Intermediate  integral,  181. 
Invariant,  92. 

Jacobi,  xvi,  165. 

Jacobi's  Last  Multiplier,  211. 
Jacobi's  method,  165,  193,  210. 

Kelvin,  58,  GO,  212. 
Klein,  xvi. 

Kutta,  94,  104,  108. 

Kutta's  numerical  method,  104. 

Lagrange,  xv,  49,  81,  162. 

Lagrange's  dynamical  equations,  210. 
Lagrange's    linear    partial    differential 

equation,  xvi,  147,  151,  158,  192. 
Laplace,  xvi. 

Laplace's  equation,  51,  189,  190,  196, 
197,  213. 

Last  multiplier,  211. 
Laws  of  algebra,  30. 

Legendre,  110. 

Legendre's  equation,  117,  120. Leibniz,  xv. 

Lie,  v,  xvi,  194. 
Linear  difference  equations,  216. 
Linear    equations    (ordinary),    of     the 

first  order,   16,  214 ;    of  the   second 
order,  86,  87,  88,  109,  127,  214,  215; 
with   constant   c  -efficients,    xv,    25, 
214. 

Linear  equations  (partial),  of  the  first 
order,  xvi,  50,    147,   151,   158,   192; 
with   constant   coefficients,   49,    173, 

178,  212. 
Linearly  independent  integrals,  216. 
Lines  of  force,  24,  134. 
Lobatto,  xv. 

Maxwell's  equations,  59. 
Mechanics,  see  Dynamics. 
Membrane,  vibrating,  190. 

Monge,  xvi,  172. 
Monge's  method,  181,  183. 
Multipliers,  135,  210,  211. 

Newton,  xv. 
Node-locus,  68. 
Non-integrable  equations,  142. 
Normal  form,  91,  92. 
Normal  modes  of  vibration,  204,  206. 

Number  of  linearly  independent  inte- 

grals, 216. Numerical  approximation,  94. 

One  integral  used  to  find  another,  87. 

136. 
Operator  D,  30,  44,  86,  174,  214. 

Operator  0,  44. 
Orbits,  planetary,  86,  209. 
Order,  2. 
Orthogonal  trajectories,  xv,  20,  23,  138, 

189. 
Oscillations,  xv,  2,  28,  29,  36,  46,  47, 

48,  50,  61,  190,   203,   204,   205,   206, 
207. 
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Page,  194. 
Particular  integral,  xv,  4,  29,  33,  44,  87, 

175,  178,  216. 

p-discriminant,  71,  155. 
Pendulum,  28,  206,  207,  209. 
Perihelion  of  Mercury,  209. 
Physics,  see  Conduction  of  heat,  Cor- 

puscle, Diffusion,  Dynamics,  Electri- 
city, Hydrodynamics,  Potential,  Ra- 
dium, Resonance,  Telephone,  Vaporisa- 

tion, and  Vibrations. 
Picard,  xvi,  94,  121. 

Picard's  method,  xvi,  94,  122. 
Poincare,  xvi. 

Poisson's  bracket  expression  (F,Fj),  166. 
Poisson's  method,  189. 
Potential,  134,  190. 
Power  series,  xv,  xvi,  4, 109, 124. 
Primitive,  4. 

Radium,  24. 
Reduction  of  order,  81. 
Regular  integrals,  1 10, 1 18. 
Resonance,  37,  46,  205. 
Riccati,  110. 

Riccati's  equation,  119,  201. 
Riemann,  vi,  194. 
Runge,  xvi,  94,  99,  100. 

Runge's  numerical  method,  99. 

Schwarz,  xvi,  92. 
Schwarzian  derivative,  92. 
Schlesinger,  194. 
Second  integral  found  by  using  a  first, 

87,  136. 
Separation  of  the  variables,  xv,  13. 
Series,  solution  in,  xv,  xvi,  4,  109,  124. 
Shaft,  rotating,  47. 
Simple  harmonic  motion,  2,  85,  204,  206. 
Simultaneous   equations,    42,    59,    133, 

168,  171,  214. 
Singular  integral,  155. 

Singular  point,  7. 
Singular  solution,  xv,  4,  65. 
Solid  geometry,  133,  137,  146,  173,  188, 

189. 
Solving  for  p,  x,  or  y,  62. 
Special  integral,  137,  150,  192. 
Standard  forms,  153. 
String,  vibrating,  xv,  50,  61,  190,  208. 
Subsidiary  equations,  147,  164,  166. 
Substitutions,  40,  61,  79,  85,  91,  93,  119, 

120,  164. 
Symbolical  methods,  xv,  33,  44,  45,  61, 

175,  178,  214. 

Tac-locus,  72. 

Taylor,  xv. 
Telephone,  58. 
Todd,  213. 
Total  differential  equations,  137. 
Transformations,  40,  61,  79,  85,  91,  93, 

119,  120,  164. 
Transformer,  electrical,  48. 

Vaporisation,  24. 
Variation  of  parameters,  88,  93. 
Vibrations,  xv,  2,  28,  29,  36,  46,  47,  48, 

50,  61,  190,  203,  204,  205,  206,  207. 

Wada,  xvi.  5,  8,  9. 
Weber,  194. 
Whittaker  and  Watson,  214. 

Whittaker's  solution  of  Laplace's  equa- tion, 51,  213. 
Wronski,  215. 
Wronskian,  215. 

x  absent,  82. 

y  absent,  82. 

Zeemann  effect,  206. 
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